
Available online at http://scik.org

Math. Finance Lett. 2020, 2020:1

https://doi.org/10.28919/mfl/4547

ISSN: 2051-2929

NEW EXACT SOLUTIONS TO OPTIMAL CONSUMPTION-INVESTMENT
PROBLEMS WITH EXPONENTIAL UTILITY

ROSSELLA AGLIARDI∗

Department of Mathematics, University of Bologna (Italy)

Copyright © 2020 the author(s). This is an open access article distributed under the Creative Commons Attribution License, which permits

unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract. We revisit the seminal Merton’s work on optimal portfolio-consumption problems in a more general

framework where exact solutions are not available. We provide exact solutions in a few special cases which were

not included in the original setting.
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1. INTRODUCTION

Optimal portfolio and consumption problems are a classical topic in mathematical finance

since the seminal articles by Merton (1969, 1971), which estabilished the framework for dy-

namic portfolio choices with stochastic variation in the prices of the securities in the portfolio.

The problem is to dynamically manage a portfolio of securities in order to maximize the ex-

pected utility of consumption over time. A huge literature has been generated from the seminal

works, dealing with various restrictions on the controls, different utility functions or alternative
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stochastic processes for the reference financial assets. Moreover, regarding the economic as-

sumptions, some extensions have been provided, for example, introducing labour income and

human capital (Basak, 1999), the possibility of bankruptcy risk (Sethi,1997), various restrictions

on the trading strategies (Bardhan, 1994), just to mention a few contributions in an extensive

research field. In the original formulation, where the underlying risky asset follows a geometric

Brownian motion, the stochastic optimal control problem leads to a Hamilton-Jacobi-Bellmann

equation that is a fully nonlinear partial differential equation or a nonlinear ordinary differential

equation. When the utility function has a power or a logarithmic shape an explicit solution is

easily obtained, while in other situations the problem is hard to solve analytically, because the

form of a solution to the HJB equation is difficult to guess. Usually the portfolio consists of a

risk-free asset and one (or more) risky assets. In this paper, we focus the analysis on the infinite

horizon problem, but we consider the general case of a portfolio of all risky assets following

geometric Brownian motions. While most literature adopts the existence of a risk-free asset,

critics contend that a riskless security is an idealization that is an acceptable approximation of

real-world situations only when inflation, credit risk, liquidity risk and any other form of finan-

cial risk are truly tiny. Therefore we work in a more general framework: of course, the special

case of a risk-free asset can be recovered just letting its volatility tend to zero. Even in the plain

case of infinite horizon, when the utility function is of exponential form solving the nonlinear

HJB differential equation is an open question. We point out that the alternative approach of

Cox and Huang (1989) based on martingale methods is formulated only for the special case of

a risk-free asset and does not apply to this problem. On the other hand, the natural guess of an

exponential shape for the solution works only in the special case studied by Merton (1969).

The general problem is presented in Section 2 along with a brief review of the already solved

cases. In Section 3 we derive a new closed-form solution for some special cases. In Section 4

we discuss the still open problem.

2. PORTFOLIO-CONSUMPTION PROBLEM WITH RISKY ASSETS

Consider a financial market with N assets being traded continuously on an infinite horizon.

Assume that their prices, Si(t), i = 1, ...,N, follow a geometric Brownian motion:
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(1) dSi(t) = µ iSi(t)dt +σ iSi(t)dW (i)
t

where the W (i)
t ’s are the components of an N-dimensional Wiener process with respect to a

given filtration and E[dW (i)
t dW ( j)

t ] = ρ i jdt with 0 ≤ ρ i j ≤ 1. Consider an investor that has

an initial wealth endowment R0 > 0 and, at any time t, has to decide how to optimally split

his/her wealth, R(t), between consumption and investment, where the investment is made by

optimally selecting the proportion of each financial asset in his/her portfolio. Let c(t) denote

the consumption and xi(t) the share of wealth invested in the ith financial asset of the portfolio

at time t. Then the array X = (x1, ...,xN) is the investor’s portfolio. Of course,
N
∑

i=1
xi(t) = 1. We

allow for negative values of the xi’s, which means that short selling is allowed in our setting.

Usually it is assumed that the portfolio-consumption strategy (X(t),c(t)) is self-financing, that

is, there are no exogeneous injections of capital from outside and no withdrawal of money

(i.e. one can finance any purchase only by selling assets which are in the portfolio). Then the

wealth’s dynamics take the form:

dR(t) =
N−1
∑

i=1
xi(t)(µ i−µN)R(t)dt +µNR(t)dt− c(t)dt +

N−1
∑

i=1
xi(t)σ iR(t)dW (i)

t +(1−
N−1
∑

i=1
xi(t))σNR(t)dW (N)

t(2)

The objective is to optimize the consumption policy under the budget equation (2), that is, to

maximize

(3) E[
∫

∞

0
e−δ tU(c(t))dt]

where E is the expectation operator, U denotes the instantaneous utility function for consump-

tion and δ is a (subjective) discount rate. In other words, we have a stochastic control problem,

where R is the state variable and (X ,c) is the control process. Let J(R) denote the optimal value

function.
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In what follows we will consider the case N = 2 to simplify the exposition and ρ12 will be

denoted by ρ . Then the Hamilton-Jacobi-Bellman equation reads:

−δJ+ sup
c,x

[U(c)+ [(x(µ1−µ2)+µ2)R− c]J′+
R2

2
[(xσ1)

2 +(1− x)2
σ

2
2

(4) +2ρσ1σ2x(1− x)]J” = 0

Let Σ = σ1
2 +σ2

2−2ρσ1σ2. By solving the static maximization problem w.r.t. the controls c

and x the following first order conditions are obtained:

U ′(c) = J′(R)

x =
µ2−µ1

Σ

J′

RJ”
+

σ2
2−ρσ1σ2

Σ
(5)

When the utility U is of the power type, the ODE can be easily solved by taking a power

function of the same form for J. Here we focus on the case of an exponential utility, because a

closed-form solution is not available in the general case.

Assume that U(c) is of the form −1
γ
e−γc where γ > 0 represents the relative risk aversion.

Plugging the FOCs (5) into the equation (4) one gets the following non-linear ODE:

(6)
J′

γ
+δJ+

1
2
(µ1−µ2)

2

Σ

(J′)2

J”
− J′ lnJ′

γ
−mRJ′− bR2J”

2
= 0

where m = [µ1σ2(σ2−ρσ1)+µ2σ1(σ1−ρσ2)]/Σ and b = (σ1σ2)
2(1−ρ2)/Σ.

Remark 1. Consider all the portfolios (x,1−x) obtained from linear combination of the assets

with returns (σ1,µ1) and (σ2,µ2). Then b turns out to be the minimum variance and m is the

mean return of the minimum variance portfolio. In other word, the coefficients of (6) are linked

to the static portfolio optimization.

In the sequel we confine the analysis to m ≥ 0. When b = 0 the corresponding value of m

represents the return of the risk-free asset, which is usually denoted by r.

Here the usual convention of Markowitz’s theory is adopted where portfolios are identifies by pairs (σ ,µ) with

σ denoting the volatility and µ the mean return.
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The special case of one riskless asset was solved by Merton in explicit form. If σ2 = 0 and

µ2 = r then the ODE (6) is written in the form:

J′
γ
+δJ+ 1

2
(µ1−r)2

σ2
1

(J′)2

J” −
J′ lnJ′

γ
− rRJ′ = 0

and a natural guess for the solution is J(R) = H exp(hR) with negative H and h, as a concave

function is needed. Substituting this function into the ODE one has

h =−γr and H =− 1
γr exp(1− δ

r −
1
2r

(
µ1
σ1

)2
].

Then the optimal portfolio is obtained with x = µ1−r
σ2

1

1
rγ

.

Apart from this well-known case, there is another special case that can be solved explicitly.

3. PERFECTLY CORRELATED ASSETS

In this section we assume that ρ = ±1. So the term with R2 in (6) vanishes and this ODE

admits an elementary solution, as shown below.

Proposition 1. If ρ = ±1 and m > 0, then the optimal value function is of the form J(R) =

H exp[−γmR] with negative H, and for the optimal portfolio we have:

x = µ1−µ2
Rγ[σ1∓σ2][µ1σ2∓µ2σ1]

+ σ2
[σ1∓σ2]

.

Proof. If ρ = −1 then Σ = (σ1 +σ2)
2. Trying an exponential solution of the form J(R) =

H exp[hR], we get:

h =−γm and H =− 1
γm exp(1− δ

m −
1

2m

(
µ1−µ2
σ1+σ2

)2
] with m = [µ1σ2 +µ2σ1]/(σ1 +σ2).

As a result, for the optimal portfolio we take x = µ1−µ2
Rγ[σ1+σ2][µ1σ2+µ2σ1]

+ σ2
[σ1+σ2]

.

Similarly, in the case ρ = 1 a solution of the form J(R) = H exp(hR) works and one gets:

h =−γm and H =− 1
γm exp(1− δ

m −
1

2m

(
µ1−µ2
σ1−σ2

)2
] with m = [µ1σ2−µ2σ1]/(σ2−σ1).

For the optimal portfolio one has: x = µ1−µ2
Rγ(σ2−σ1)[µ1σ2−µ2σ1]

+ σ2
[σ2−σ1]

.

Note that, unfortunately, the procedure above does not work when m = 0. If in the case ρ = 1

we rewrite m = σ1σ2
σ2−σ1

[λ 1−λ 2] with λ i = µ i/σ i, i = 1,2, then the interpretation is that m = 0
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occurs when both assets have the same Sharpe ratio. Note that µ1−µ2
σ1−σ2

can be written as λ =
µ i
σ i

.

In this situation, the nonlinear differential equation takes the form:

(7)
J′

γ
+δJ+

λ
2

2
(J′)2

J”
− J′ lnJ′

γ
= 0

and the solution method is not so trivial as above. Let us try with a function J(R) such that

J′(R) = H exp(h
√

R) where H > 0 and h < 0. Integrating by parts we get:

J(R) = 2H
h exp(h

√
R)
{√

R− 1
h

}
. Plugging this function into (7) we find:

h =−
√

γ(2δ +λ
2) and H = exp[λ 2/(2δ +λ

2)].

Then we have the following

Proposition 2. If m = 0, then the optimal value function satisfying (7) is of the form

J(R) = 2H
h exp(h

√
R)
{√

R− 1
h

}
with h =−

√
γ(2δ +λ

2) , λ = µ i/σ i and H > 0. Finally, for the optimal portfolio we have:

x = 2λ√
R(σ1−σ2)

1√
γ(2δ+λ

2)
+ σ2

σ2−σ1
.

Note that the optimal consumption c is positive whenever R > λ
2

(λ 2+2δ )γ
, that is, unless R is very

small.

To our knowledge, this result is not found in the literature on optimal consumption and invest-

ment strategies.

Remark 2. In the case of one risky asset and a riskless asset with return r = 0 Merton’s

solution does not work. However, following the suggestion of Proposition 2, a function on the

form

J(R) = 2H
h exp(h

√
R)
{√

R− 1
h

}
solves the ODE and thus the optimal share of the risky asset is:

x = 2µ1√
γRσ2

1

√
2δ+(µ1/σ1)2

.
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Note that Remark 2 complements the analysis of Merton (1971). A zero risk-free interest rate

is the most common evidence in real-world markets. Therefore, our solution is of special inter-

est in recent times, while it was of merely theoretical significance when Merton’s article was

published.

4. THE GENERAL CASE

In the generic case, the nonlinear HJB equation is of the form:

(8)
J′

γ
+δJ+

1
2

µ̃
2 (J′)2

J”
− J′ lnJ′

γ
−mRJ′− bR2J”

2
= 0

with b > 0.

To our knowledge, a closed-form solution for this equation is not found in the literature. Even

in the special case δ = 0 a non trivial solution is hard to find in an elementary form. In what

follows we show how to reduce it to a ’named ’ class of equations. Let us look for a solution

such that J′ = e−V . Then (8) with δ = 0 is transformed into the first order equation:

1+V
γ
− 1

2 µ̃
2 1

V ′ −mR+ bR2

2 V ′ = 0

which can be solved for V ′. Note that, being J a concave function, V ′ should be positive and

thus we have:

V ′ = [mR− 1+V
γ

+
√

(mR− 1+V
γ

)2 +bµ̃
2R2]/(bR2).

Changing to variables

x = lnR and 1+V (R)−mγR = R.Y (lnR)

the equation becomes

[Y ′+Y +mγ][Y +
√

Y 2 +µ0] = γ µ̃
2e−x

with µ0 = b(γ µ̃)2. We get a simpler expression by taking Z = µ0 +2Y 2 +2Y
√

Y 2 +µ0. In

particular, for m = 0 we obtain an Abel equation of the second kind of the form:
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(9) Z′[Z +µ0]+2Z2−2Z[µ0 +2γ µ̃
2e−x] = 0

This equation is not included in the list of Polyanin and Zaitsev (2003), p.10, and Cheb-Terrab

and Roche (2003), providing non trivial solutions to Abel equations.

5. CONCLUSION

This paper revisits a long-standing problem of optimal portfolio-consumption allocation with

an exponential utility. While the original problem with a risk-free asset is almost trivial, the gen-

eral case is still unsolved in explicit form. Our contribution is twofold: we provide an interpre-

tation for the coefficients of the related differential equation in terms of the static optimization

problem and we find an explicit solution in a few special cases which occur in several financial

strategies. Morover, we find a solution to the case of zero risk-free interest rate that was left out

in Merton’s setting. At the time of publication of Merton’s seminal paper only positive interest

rates were meaningful, while nowdays strictly positive interest rates are achieved only for long

maturities in real-world markets.
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