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1. Introduction 

The concept of state-price deflator or stochastic discount factor, which has been 

introduced by Duffie (1992), is a convenient tool in general asset pricing theory. It 

contains information about the valuation of payments in different states at different 

points in time. The state-price deflator is a natural extension of the notion of state 

prices that were introduced earlier and studied by Arrow (1951/53/71), Debreu (1954), 

Negishi (1960) and Ross (1978), a milestone in the history of asset pricing (see 

Dimson and Mussavian (1999)). Though general frameworks for deriving state-price 
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deflators exist (e.g. Milterssen and Persson (1999) and Jeanblanc et al. (2009)), there 

are not many known explicit expressions for them and their distribution functions. 

     Recently, the author has introduced a multivariate Black-Scholes-Vasicek (BSV) 

deflator and has applied it to option pricing in [24]-[26]. Our next and present goal is 

an extension of the Black-Scholes deflator to a more general version with Vasicek 

interest rates as additional source of randomness. We obtain extensions of the 

Margrabe and Black-Scholes option pricing formulas and validate them in a multiple 

risk economy with Vasicek interest rates. The invariance of these formulas against 

changing market prices of risk, which has been first noticed in [24], is preserved in the 

extended model. 

     A short account of the content follows. Section 2 constructs the Gaussian 

state-price deflator for the multidimensional Black-Scholes market with Vasicek 

interest rates. Then, we show in Section 3 that Margrabe’s formula remains valid in 

this multiple risk economy with stochastic interest rates. The core of our contribution 

is Section 4, which contains a new elementary approach to the generalized 

Black-Scholes formula with Vasicek interest rates. After parameter transformation it 

coincides with the formula by Kim (2002) that has been obtained with the equivalent 

martingale measure method. This earlier derivation applies equally simple algebra and 

the Kunitomo and Takahashi (1992) Lemma. We conclude with some comments 

including related research in this area. 

 

2. A Gaussian state-price deflator in a multiple risk economy with 

stochastic interest rates 

Consider a multiple risk economy with  1m   risky assets, whose real-world 

prices with time horizon  T   satisfy the stochastic differential equations of Itô type 
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where the  k ’s  are constant volatilities, the )(tk ’s  are arbitrary time 

dependent Gaussian drifts, and the )(k

tW ’s are correlated standard Wiener processes 

such that  dtdWdWE ij

j

t

i

t ][ )()( . The geometric Brownian motions (2.1) constitute 

a so-called multidimensional Black-Scholes market. The economy contains also an 

exogenously given money market account, whose value follows the real-world 

dynamics 

,],0[,)(/ TtdttrMdM tt         (2.2) 

 

where the short rate process follows a one-factor diffusion process of Vasicek (1977) 

type 

  )1()()(  m

tdWdttrtdr  ,     (2.3) 

 

with  )1( m

tW   a standard Wiener process that is correlated with the Wiener processes 

driving the risky assets such that  mkdtdWdWE mk

m

t

k

t ,...,1,][ 1,

)1()(  

  . Let  T

tB   

be the price at time  t   of a zero-coupon bond paying 1 unit of account with 

certainty at maturity date  T . According to Munk (2011), equations (7.14)-(7.15), the 

bond prices follow the dynamics 
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where, for the Vasicek interest rate specification, the parametric functions are given 

by 
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The constant  01 m   is the market price of the risky zero-coupon bond (the 

1m -th asset in the economy). Note that a constant market price of risk can be 
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justified using market equilibrium theory (e.g. Munk (2011), Section 5.4.2). One 

observes that the second term in (2.4) is negative (a positive shock to the short rate 

implies a negative shock to the zero-coupon bond price and vice versa). Therefore, the 

volatility of the bond price is actually the absolute value of  ))(,( trtT

B , which 

justifies herewith the definition of the time to maturity dependent volatility function   

)(1 tTm  . Since in equilibrium risky assets have usually an expected rate of return 

that exceeds the instantaneous risk-free rate, the constant  1m   must be negative. 

Consider further the (constant) market prices 0k   of the first  m   risky assets 

defined by 

mktrtkkk ,...,1),()(   .     (2.6) 

 

A straightforward application of Itô’s Lemma to the system of stochastic differential 

equations (2.1) and (2.4) (taking into account (2.5) and (2.6)) implies the following 

representations in terms of the integrated short rate process  
t
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 Tt ,0   one has 
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Since the Vasicek short rate  )(tr  (given the initial value  )0(r ) is normally 

distributed, the integrated short rate  tR   is also normally distributed. It follows that 

the 1m  risky assets in (2.7) are exponential Gaussian processes with lognormal 

distributions. The state-price deflator in [24] generalizes as follows to the context of a 

multiple risk economy with stochastic interest rates. 
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Theorem 2.1. (Exponential Gaussian state-price deflator of dimension  1m ) Given 

is a Black-Scholes market with  1m   risky assets in a stochastic Vasicek interest 

rate environment. Assume that the risky assets and the bond price follow the 

log-normal real-world prices (2.7), where the correlation matrix  

1,1),(  mjiC ij   of the multivariate Wiener process ),...,( )1()1(  m

ttt WWW   

is non-singular and positive semi-definite. Then, the exponential Gaussian process 
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is a well-defined state-price deflator. 

Proof. According to the general theory of state-price deflators (e.g. Munk (2011), 

Section 4.3), the stochastic process (2.8) defines a deflator provided the following 

conditions are fulfilled: 

 

.],0[,][,,...,1,][.3

,],0[,1])exp([.2

,],0[,][,,],0[,0,1.1

0

)1()(

0

)()1(

)1(

)1()1()1(

0

TtBBDEmkSSDED

TtRDED

TtDVarstatesallTtDDD

TT

t

m

t

kk

t

m

t

t

m

t

m

t

m

t

m













 

The first condition D1 is trivially fulfilled. The conditions D2 and D3 mean that the 

discounted cumulative interest rate process and the discounted risky asset prices are 

martingales. The validity of D2 follows from the fact that  

  t
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2
1   and variance  tCT  .  To show the first part of D3, let )(tmk   

and  )(2 tvk   be the mean and variance of the normally distributed random variable 
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where the last equality follows from the fact that   C . It follows that 
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Similarly, let  )(tmB   and  )(2 tvB   be the mean and variance of the normal random 

variable 
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From the well-known rules of stochastic calculus (e.g. Munk (2011), Chapter 3), one 

gets 
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where again the equation   C   has been used. It follows that 
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This shows D3 and completes the proof.  ◊ 

 

3. Margrabe’s formula in a stochastic interest rate environment 

The exchange option pricing formula by Margrabe (1978) is validated in the multiple 

risk economy with Vasicek interest rates. To show this, one needs a further elementary 

result from probability theory. Suppose that the random vector   21, SS   has a 

bivariate lognormal distribution with parameter vector    ,,,, 2211   such that 

the random vector 
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      22211121 /ln,/ln,   SSUU     (3.1) 

 

has a standard bivariate normal distribution with correlation coefficient   . 

 

Lemma 3.1. Let  )(x   be the standard normal distribution. Then the expected 
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Theorem 3.1. (Margrabe for the multidimensional Black-Scholes market with Vasicek 

interest rates) Under the assumptions of Theorem 2.1, the market value at initial time 

of a European exchange option on the risky assets with real-world prices  
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Proof. It suffices to show (3.3) for 2,1  k . By assumption the random variables 
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are normally distributed. Let    ,,,, 2211   denote their means, standard 

deviations and correlation coefficient. From the proof of Theorem 2.1 one borrows the 
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which imply that    2,1,ln )(
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where further use has been made of the identity   C . From this and the above 
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Inserting the obtained expressions into (3.2) one obtains (3.3) for  2,1  k .  ◊ 

 

Remarks 3.1.  Poulsen (2010), end of Section 1, has observed that Margrabe’s 

formula is still valid with stochastic interest rates, provided the factors that drive 

interest rates are independent from those driving the risky assets. Bernard and Cui 

(2010) show that this is true even when interest rates and risky assets are non-trivially 

dependent. Its validity in a multiple risk economy with Vasicek interest rates is new as 

is its different novel and short elementary proof. Furthermore, the present result 

generalizes the previous one in [24], Theorem 2. One might challenge whether the 

multivariate maximum, minimum and maximum spread option formulas in [26] also 

generalize to the present and even more general contexts. 
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4. Black-Scholes formula in a stochastic interest rate environment 

The original European call option formula by Black and Scholes (1973) (see also 

Merton (1973)) is extended to the multiple risk economy with Vasicek interest rates. 

The elementary derivation of the generalized formula is done along the line of Section 

3, where some additional stochastic calculus formulas related to the integrated 

Vasicek short rate process are required. Let us start from the short rate dynamics under 

the risk-neutral probability measure, also called Q-measure, such that 
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Alternatively, some authors start from a P-measure of the type (4.1) and transform it 

to the corresponding Q-measure (see the later comments about this equivalent 

approach). The following formulas enter into the generalized Black-Scholes formula 

(4.4) below. The identity F1 is a crucial ingredient in the proof of Theorem 4.1. 
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Proof. For simplicity in notation omit indices and set  1 m , )1(  m

tt WW . 

Integrating both sides of (4.2) over the interval  ],0[ T   yields the identity 
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Identifying the first integral with the integrated process one gets the stochastic 

representation 
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On the other hand, solving the stochastic differential equation (4.2), shows that 
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Inserted into the preceding relation yields the (short rate independent) representation 

 

 








 
T

s

sT

TT dWeWTBrTR
0

)(11 )/()())0((  . 

 

Formulas for the first terms of the identities F1 and F2 follow at once, namely 

 

 
).())0((][

),())0((][ 11

TBrTRE

TBrTRE

T

Q

T



 




 

 

Clearly, the risk-neutral integrated mean in F2 follows by setting  0   in the 

real-world integrated mean in F1. To calculate the variance of the integrated process 

one notes that 
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
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
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s
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T

s

s

T

T

T

s

sT

TT

dWeVaredWeWCoveT

dWeWR
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
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But, one has 

)1()/1(],[

),1()2/1(][

T

00

2
T

0

2

0





Ts
T

s

s

T

Ts
T

s

s

edsedWeWCov

edsedWeVar









. 

 

Insert into the preceding relation and rearrange to get formula F3. The remaining 

covariance is calculated as follows (use the explicit representation of  TR ): 

 .)()/(]E[)/(]E[],[
0

2 TBTdWeWeWWRWRCov
T

s

s

T

T

TTTTT      

Now, insert into the right-hand side of F1 and compare with the above integrated 

mean formula to show the identity F1.  ◊ 

 

We are ready for the main result. 

Theorem 4.1. (European option for the multidimensional Black-Scholes market with 

Vasicek interest rates) Under the assumptions of Theorem 2.1, the market value at 

initial time of a European call option on the risky asset with real-world price  

 mkS k

t ,...,1,)(  , strike time  T  and strike price  K   is given by the closed-form 

formula 

     ,)(exp])([ )(

2

)(

1

)(

0

)()1( k

f

kkk

T

m

T dTrKdSKSDE  


  (4.4) 

with 

 

],,[2][)(

],Var[][)(

),(,
)(

)()(/ln

)1(

k1,1

22

2
1

)(

1

)(

2

2

2
1)(

0)(

1



 








m

TTmTkk

TT

Q

f

k

kk

k

kf

k

k

WRCovRVarTT

RRETr

Tdd
T

TTrKS
d








   (4.5) 

and these quantities are determined by Lemma 4.1. 
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Proof.  By symmetry it suffices to show (4.4) for 1k . The random variables 

 

  )1(

1

2

12
1

112
1)1(

0

)1()1(

1 )(lnln TT

TT

T

m

T WTWTCSSDX    , and 

  T

TT

T

m

T WTCRKKDX   

2
1)1(

2 lnln  

 

are normally distributed. Let    ,,,, 2211   denote their means, standard 

deviations and correlation coefficient. From the proof of the Theorem 2.1 one has 

 

TTCTTCS TT  )2(,)(ln 11

2

1

2

1

2

12
1

112
1)1(

01  , hence 

)1(

0

2

12
1

1 ln S  . 

 

Through further calculation one obtains (use the identity F1 of Lemma 4.1) 
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2
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

 





m

TTm

T

T

m

TT
j

jmj

T

T
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T
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
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



 

 

which implies that 

][][ln
2
12

22
1

2 TT

Q RVarREK   . 

With 

  TT RWTKSXX  )1(

1

2

12
1

11

)1(

021 )(/ln  , 

 

one deduces that 
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Similarly, one gets 
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from which one gets 
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and finally 
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Inserting the obtained expressions into (3.2) one obtains (4.4) for  1k .  ◊ 

 

At this point some comments are in order. First of all, one notes that the defined 

Vasicek accumulated interest rate in (4.5) is closely related to bond pricing under the 

Vasicek affine model of the term structure of interest rates. Indeed, given the 

well-known bond pricing formula under the Q-measure, one verifies easily the 

relationship 

 

   
  ./)1()(,]Var[)()(

,)(exp)0()()(exp

2
1

0

 T

T

f

T

eTBRTBTTA

TrrTBTAB




   (4.6) 
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It is interesting to compare (4.4) with the formula stated in Kim (2002). For this, start 

alternatively from (4.1) as real-world P- measure to get the following short rate 

dynamics under the Q-measure (e.g. Munk (2011), Section 7.4, equation (7.35)) 

 

  Q

tm dWdttrtdr  

  )()( 1

1 .    (4.7) 

 

Kim derives essentially the same closed-form formula through application of the 

equivalent martingale measure. Indeed, replacing  1

1



  m   by    (to be 

consistent with the P-measure) and doing the necessary algebraic manipulations 

shows equality of the two formulas. This earlier derivation applies equally simple 

algebra and the Kunitomo and Takahashi (1992) Lemma, which is closely related to 

the bivariate version of Lemma 2.3 in [26]. Besides its attractive elementary approach, 

the state-price deflator method yields new insight, namely the validity of the formula 

under the presence of multiple Black-Scholes risky assets that are all correlated with 

Vasicek interest rates, and the invariance of it against changing market prices of risk. 

From an economic point of view, the latter means that, in contrast to the CAPM by 

Treynor (1961/62), Sharpe (1964), Lintner (1965) and Mossin (1966) for investment 

in stocks portfolios only, option pricing does not reward for taking risks. Actually, 

similar formulas could also be derived this way for any other Gaussian short rate 

processes including the Merton-Ho-Lee type (continuous-time version of the Ho and 

Lee (1986) model with constant drift). Closed-form formulas for Gaussian processes 

have originally been suggested by Merton (1973), Rabinovitch (1989), and Amin and 

Jarrow (1992). The state-price deflator approach has been pioneered by Rubinstein 

(1976) who recovered this way the Black-Scholes formula (consult Yao (2001) for a 

wealth of references about this method). By passing, we note that Kim (2002) 

proposes some interesting closed-form approximation formulas for non-Gaussian 

short rate processes as the Cox-Ingersoll-Ross (1985) affine model and the Brennan 

and Schwartz (1980) non-affine model, the latter being also considered in Courtadon 

(1982). These asymptotic approximations are based on the approach by Kim and 
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Kunitomo (1999), which has been validated in Kunitomo and Takahashi (2003) (see 

also Takahashi (2009)). Fang [17],[18] uses the partial differential equation approach 

to derive a pricing formula under Vasicek interest rates. However, the latter technique 

applies much more involved mathematics. Other papers include Wilhelm (2001), and 

Abudy and Izhakian (2011). The state-price deflator approach adds another technique 

to the eight valuation methods identified by Andreasen et al. (1998) that can be used 

to derive the original Black-Scholes formula. Note that further generalizations are 

possible. Among the hybrid models with risky assets and both stochastic volatility and 

interest rates, one might mention Guohe (2007), who derives closed-form pricing 

formulas for a double exponential jump-diffusion model with Vasicek and CIR 

interest rates, and Grzelak and Oosterlee (2011) who obtain some general 

approximations. Option pricing in an international economy with additional stochastic 

FX rates is of further interest (e.g. Haastrecht and Pelsser (2011), Wittke (2011)). 

Finally, research on further alternative representations of the Black-Scholes formula is 

of equally current interest. For example, Madan et al. (2008) express it as cumulative 

function of a last (or first) passage time of Brownian motion (see also Profeta et al. 

(2010)). Without doubt, investigations related to the important Black-Scholes 

milestone will continue over the years to enrich both Mathematics and Finance. 
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