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1. INTRODUCTION

Dividends strategy was introduced in actuarial research by Bruno De Finetti [1] in the bino-

mial risk model. Since then, it has received attention of many scholars when studying dividend

problems. See e.g. Zhang Liu and Ping Chen [2], Yongxia Zhao, Hua Dong, and Wei Zhong [3],

Pecaric et al. [4] and Ronnie L Loeffe [5]. There are four performance measures that need to

be known by insurance companies. The probability of ruin, the time of ruin, the surplus flows

before and after ruin and the dividends shared up to ruin. The expected discounted penalty

function also called Gerber-Shiu function is the joint distribution of the time to ruin, the surplus

before ruin and the deficit at ruin. Clearly, the expected present value of dividend payments

before ruin and the expected discounted penalty function are sufficient to evaluate the above

mentioned performance measures. The the explicit formula for these two function are known

under some specific claim size distributions such as Exponential, Erlang or Binomial, it remains

problematic to obtain clear formula in general.

When analysing the expected present value of dividend or the expected discounted penalty

function, insurance companies do not have the probability distribution of claim numbers and

claims sizes, instead they have data set on claim numbers and individual claim sizes. As a

result, they are unable to compute the explicit formulas, it is more useful to investigate non-

parametric estimation of the aforementioned functions based on the data set of claim numbers

and individual claim sizes. Estimation of ruin problems has been lately studied in risk theory

in various models without dividend barriers. For instance, Honglong You et al. [6] proposed

a bootstrap method to construct a confidence interval estimate of the ruin probability in the

classical compound Poisson model. Yasutaka Shimizu and Zhimin Zhang [7] estimated the

ruin probability under a spectrally negative Levy insurance risk by Laguerre serie expansion.

Florian Dussap [8] and Wen Su, Yaodi Yong, and Zhimin Zhang [9] estimated the Geber-Shiu

function under the perturbed compound Poisson risk model. Wen Su and Yunyun Wang [10] and

Yujuan Huang et al. [11] considered a Levy risk model by Laguerre series expansion. Under the

risk model with barrier dividend strategy, Jiayi Xie and Zhimin Zhang [12] estimated dividend

problems in the classical compound Poisson risk model by Fourier cosine series expansion and

Yang Yang, Jiayi Xie, and Zhimin Zhang [13] extended to the perturbed compound Poisson risk
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model. To the best of our knowladge, there are not any works on non-parametric estimation of

dividend problems by Fourier-Sinc series expansion.

In this paper, we assume that the financial surplus Ut is modeled as Wiener process.

Ut = u+ ct−
Nt

∑
i=1

Xi +σW (t), t ≥ 0(1.1)

where u ≥ 0 is the initial capital and c > 0 is the constant premium per time. The aggregate

claims ∑
Nt
i=1 Xi follows a compound poisson process, where the number of claims {Nt}t≥0 is

an homogeneous poisson process with intensity λ > 0, and the individual claim sizes {Xi}i≥1

is a sequence of positive i.i.d random variables generated by a generic variable X with density

fX and mean µ . Finally, {W (t)}t≥0 is a standard Brownian motion with W (0) = 0, and σ > 0

is the diffusion volatility parameter. We suppose that {Nt} ,{Xi} and {W (t)} are mutually

independant. In this paper, we shall assume throughout the safety loading condition c > λ µ ,

so that ruin is an uncertain event. Given a finite barrier level b > 0, we modify the process

{Ut}t ≥ 0 by constant barrier dividend, and denote the modified model by
{

Ub
t
}

t ≥ 0. We

assume that whenever the surplus process reaches level b, dividends are paid off continuously

such that the surplus remains at level b until it falls bellow b. Let τb = inf
{

t ≥ 0 : Ub
t ≤ 0

}
be

the time of ruin. For the interested readers on ruin related problems, see F Lundberg and Försä

akringsteknisk Riskutjä amning [14], Corina Constantinescu et al. [15] and Filip Lundberg. 1.

[16]. The present value of total dividends paid before ruin is given by

Db =
∫

τb

b
e−δ tdD(t), 0≤ u≤ b

where δ > 0 is the force of interest for valuation, and D(t) is the aggregate dividends paid by

time t. Given the initial surplus level 0≤ u≤ b, we are interested in the expected present value

of total dividend payments before ruin V (u,b) and the expected discounted penalty function

φ(u,b) associated with model Ub
t and defined by

V (u,b) = E
[∫

τb

0
e−δ tdDb(t) |U0 = u

]
(1.2)

and

φ(u,b) = E
[
e−δτbw

(
|Ub

τb
|
)
|U0 = u

]
(1.3)
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w is a nonnegative penalty function of the deficit at ruin.

In this paper, we shall focus on the non-parametric estimation of the expected present value of

dividend payments before ruin and the expected discounted penalty function. This problem has

been considered by Yang Yang, Jiayi Xie, and Zhimin Zhang [13]. they proposed the estimators

based on Fourier Cosine method. The main objective of this paper is to propose an alternative

method to estimate V (u,b) and φ(u,b), the Fourier-Sinc method. This method was used by

Zhimin Zhang [17] to propose an estimator of the Gerber-Shiu function in a perturbed com-

pound poisson risk model without dividend strategy. The remainder of this paper is orginized

as follows. In section 2, we present some preliminaries on V (u,b) and φ(u,b). In section 3, we

describe the Fourier-Sinc method. In section 4, we study the estimators of V (u,b) and φ(u,b)

based on Fourier-Sinc series expansion. In section 5, we study the asymptotic properties of our

estimators when the observation interval is large. Some simulation results are given in section

6 to show the effectiveness of our method and section 7 is the conclusion.

2. SOME PRELIMINARIES

In this section, we recall some important results that shall be used. We shall first define

an explicite formula of V (u,b). Note that the Wiener Process Ut is known to be a spectrally

negative Levy process, and its Laplace exponent is defined by

ψU(s) = cs+
1
2

σ
2s2−λ (1−L fX(s))(2.1)

where L fX(s) =
∫

∞

0 e−sx fX(x)dx is the Laplace transform of fX , see Masahiko Egami and

Kazutoshi Yamazaki [18]. We define the q-scale function Wq(x) associated with the process Ut ,

with Laplace transform given by∫
∞

0
e−sxWq(x)dx =

1
ψU(s)−q

, f or s≥ φq.(2.2)

Wq(x) is a strictly increasing and continuous function. One can extend Wq to the whole real

line by setting Wq(x) = 0 for x < 0. Througout this work we shall consider the case q = δ and

ρ = Φδ for notational convenience. By Zhimin Zhang and Zhenyu Cui [19] we know that

h(x) =
δ

ψ ′U(ρ)
eρx−δWδ (x), x ∈ R(2.3)
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is the probability density function of the random variable U0−Ueδ
, where eδ denotes an

exponential random variable with rate δ ≥ 0. Set

h+(x) =


h(x), x≥ 0

0 x < 0

g+(x) =


h′(x), x≥ 0

0 x < 0

The expected present value of dividend payments before ruin depends of h+ and g+ can be

expressed by

V (u,b) =
δ

ψ ′U (ρ)
− eρuh+(u)

δρeρ(b−u)

ψ ′U (ρ)
− e−ρug+(u)

(2.4)

For futher details, see Jiayi Xie and Zhimin Zhang [12].

For {Ut}t ≥ 0, The ruin time is defined by τ = inf{t ≥ 0 : U(t)< 0} with the convention

τ = ∞ if U(t)≥ 0 for all t ≥ 0 and according to this definition the expected discounted penalty

function in this model is defined by

φ(u) = E
[
e−δτw(U(τ−), |U(τ)|) �{τ<∞}|U0 = u

]
, u≥ 0(2.5)

where w : [0,∞)∗ [0,∞) 7→ [0,∞) is a measurable penalty function of the surplus prior to ruin

and the deficit at ruin, δ ≥ 0 represents the force of interest and �{A} is the indicator function of

the event A. Set w0 = w(0,0). For the expected discounted penalty function φ(u,b), it can be

given via the dividends-penalty identities

φ(u,b) = φ(u)+φ
′(b)V (u,b)(2.6)

proposed by Yasutaka Shimizu and Zhimin Zhang [20].

3. DESCRIPTION OF THE METHOD

For all integrable function f such that the Fourier transform F f of f is absolutely integrable,

one can recover the function f by the inverse transform formula
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f (x) =
1

2Π

∫ +∞

−∞

e−isxF f (s)ds(3.1)

If f is not integrable, we can truncate the integral domain and use

fm(x) =
1

2Π

∫ +mπ

−mπ

e−isxF f (s)ds(3.2)

to approximate the function f, where m is a large number. It is well known that ‖ f − fm‖2 =

O(m−1).

Let us introduce the following subset of L2

Sm =
{

f ∈ L2,Supp(F f )⊂ [−mπ,mπ]
}

where Supp(F f ) denotes the support set of the Fourier transform F f . Let sin(x) = sin(πx)
πx ,

and for m > 0, k ∈ Z, define

ψm,k(x) =
√

msinc(mx− k) .(3.3)

It is well known that
{

ψm,k
}

k∈Z form an orthogonal basis of Sm. Hence, for any f ∈ Sm, we

have

f (x) = ∑
〈

f ,ψm,k
〉
ψm,k(x).(3.4)

It follows from 3.4 that fm has Fourier transform F fm(s) = F f (s) �{s∈[−mπ,mπ]}, which

together with plancherel theorem gives ‖ fm‖2 = 1
2π
‖ fm‖2 = ‖ f‖2 ,∞. Hence, we conclude that

fm ∈ Sm. As a result, formula 3.4 yields

fm(x) = ∑
k∈Z

Am,kψm,k(x)(3.5)

where Am,k
〈

fm,ψm,k
〉
. Note that ψm,k has Fourier transform

Fψm,k(s) = e
isk/m√

m �{s∈[−mπ,mπ]}(3.6)

see Zhimin Zhang [17] which together with plancherel theorem gives
∥∥ψm,k

∥∥2
2 =

1
2π

∥∥ψm,k
∥∥2

=

1. For the coefficient Am,k, by the plancherel theorem, we have
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Am,k =
1

2π

〈
F fm,Fψm,k

〉
(3.7)

=
1

2π
√

m

∫ mπ

−mπ

F f (s)e−isk/mds

=
√

m
∫ 1

2

−1
2

F f (2πms)e−i2πskds

=
√

m
∫ 1

0
F f

(
2πm

(
s− 1

2

))
e−i2π(s− 1

2)kds

=
√

meikπ

∫ 1

0
F f

(
2πm

(
s− 1

2

))
e−i2πskds

Moreover, for every fixed m, plancherel theorem gives

∑
k∈Z

∣∣Am,k
∣∣2 = ∥∥∥∥∥∑

k∈Z
Am,kψm,k

∥∥∥∥∥
2

= ‖ fm‖2 =
1

2π
‖F fm‖2 ≤ 1

2π
‖F f‖2 = ‖ f‖2 < ∞

which implies that
∣∣Am,k

∣∣→ 0 as |k| →∞. As a result, we can truncate the infinite sum in 3.5 to

get

fm(x) = fm,k(x) :=
K

∑
k=−K

Am,kψm,k(x)(3.8)

where K is a large integer.

4. ESTIMATION PROCEDURE

In this section, we are going to estimate the expected future dividends and the expected

penalty function using the Fourier-Sinc series expansion.We assume that the surplus process

can be observed over a long time interval [0,T ]. Let ∆≥ 0 be a sampling interval. Without loss

of generality, we assume that T/∆ is an integer and let n = T/∆.

Suppose that the insurer can get the following data-set.

• Data-set on surplus level:
{

U j∆ : j = 0,1,2, · · · ,n
}

Where U j∆ is the observe surplus

level at time t = j∆

• Data-set on claim numbers and claim sizes:{
N j∆,X1,X2, · · · ,XN j∆

}
j = 0,1,2, · · · ,NT where N j∆ is the total claim number up

to time t = j∆.
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We shall propose an estimator for the expected discounted penalty function V (u,b) and φ(u,b).

Obviously, we need to estimate the following quantities σ2, λ , ρ, ψ ′U(ρ), F fX(s), h+(u) and

g+(u). As in Zhimin Zhang [17], we can estimate λ , ρ, F fX(s) and L fX(s) by

σ̂
2 =

1
n∆

NT

∑
j=1

U j∆−U( j−1)∆− c∆+
N j∆

∑
k=N( j−1)∆+1

Xk

2

λ̂ =
NT

T

F̂ f X(s) =
1

NT

NT

∑
j=1

eisX j

L̂ f X(s) =
1

NT

NT

∑
j=1

e−sX j

It is known that ρ̂ ∈

[(
−c+

√
c2 +2σ̂2δ

)
/σ̂2 ,

(
λ̂+δ

)
c

]
and ρ̂ ≥ δ/c. So it remains to

estimate h+(u) and g+(u) which give the estimation of the expected present value of total divi-

dends V (u,b) by formula 2.4. Then we shall estimate the first derivative φ ′(u) of the expected

penalty function and finally, we use the penalty identity function 2.6 to have the estimators of

the expected penalty function φ(u,b).

First, h+ and g+. Since we have their Fourier transforms, we need to estimatte the coefficients{
Ah+

m,k

}
and

{
Ag+

m,k

}
by formula 3.7 and then we get the estimates of h+ and g+ based on formula

3.8. We recall that the Fourier transforms of h+ and g+ are given by

Fh+(s) =
δ

ψ ′U(ρ)
× 1
−is−ρ

− δ

ψU(−is)−δ

and

Fg+(s) =
δ

ψ ′U(ρ)
× ρ

−is−ρ
− −iδ s

ψU(−is)−δ

It follows from formula 3.8 that h+ and g+ can be estimated by

ĥ+m,k =
K

∑
k=−K

Âh+
m,kψm,k(u)(4.1)

and

ĝ+m,k =
K

∑
k=−K

Âg+
m,kψm,k(u)(4.2)
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where

Âh+
m,k =

1
2π
√

m

∫ mπ

−mπ

F̂h+(s)e
−isk

m ds(4.3)

and

Âg+
m,k =

1
2π
√

m

∫ mπ

−mπ

F̂g+(s)e
−isk

m ds.(4.4)

Now we can estimate the expected present value of total dividends by

V̂ (u,b) =
δ

ψ̂U
′
(ρ̂)
− e−ρ̂uĥ+(u)

δ ρ̂eρ̂(b−u)

ψ̂U
′
(ρ̂)
− e−ρ̂uĝ+(u)

(4.5)

Next, we use the Fourier-Sinc serie expqnsion to estimate our expected penalty function

φ(u,b). Zhimin Zhang [17] already estimated the expected penalty function φ(u) in the per-

turbed compound poisson risk model with zero dividend. Hence, it remains to estimate its first

derivative and then apply the dividends-penalty identities 2.6. We recall that

Fφ
′(s) =−isFφ(s)−φ(0)(4.6)

where

Fφ(s) =
σ2

2 w0 (−is−ρ)+λ [L ω(ρ)−Fω(s)]
ψU(−is)−δ

w0 = w(0,0) and ω(u) =
∫

∞

u w(x−u) fX(x)dx.

By formula 3.8, φ ′ can be estimated by

φ̂ ′m,k(u) :=
K

∑
k=−K

Âφ ′

m,kψm,k(u)(4.7)

where

Âφ ′

m,k =
1

2π
√

m

∫ mπ

−mπ

F̂φ ′(s)e
−isk

m ds

Finally, by the dividends-penalty identities 2.6 we obtain

φ̂(u,b) = φ̂(u)+ φ̂ ′(b)V (u,b)
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Remark 4.1. When coming from the point of view of computation, it is more convenient to

express 3.8 as follows

fm,k(x) :=
K

∑
k=−K

B̂m,kψm,k(x)

where 3.7 and Trapezoidal rule,

B̂m,k = Âm,k−K−1

=
√

meπ(k−K−1)
∫ 1

0
F f

(
2πm

(
s− 1

2

))
e−i2πsKe−i2πs(k−1)ds

≈
√

meπ(k−K−1)
2K+1

∑
j=1

1
2K +1

F f
(

2πm
(

j−1
2K +1

− 1
2

))
e−i2πs k

2K+1 ( j−1)e−i 2π

2K+1 ( j−1)(k−1)

Hence, the coefficient B̂m,k can be computed via Fast fourier transform, FFT.

5. ASYMPTOTIC PROPERTIES

In this section, we derive some asymptotic properties of the estimators as T →∞. Throughout

this section, we use C to denote a generic constant that may vary at different steps. For two

nonnegative functions f1, f2 with domain χ ⊆ R, we use f1 ≤ f2 to mean f1(x) ≤ C f2(x)

uniformly in x ∈ χ . Similarly, we use f1 ≥ f2 to mean f1(x)≥C f2(x) uniformly in x ∈ χ . For

two sequences of functions { fk} and {gk}, we use fk ≤ (or≥)gk to mean fk(x)≤ (or≥)Cgk(x)

uniformly in k and x.

Proposition 5.1. Suppose that c≥ λ µ1 and µ2 ≤ ∞ hold, the we have ρ̂−ρ = Op

(
T−1/2

)
.

Proposition 5.2. Suppose that C > λ µ1, µ2 < ∞,
∥∥H j(X)

∥∥
p,1 < ∞ for j = 0,1, the we have

|Fh+(s)|.
1

1∨|s|
|Fg+(s)|.

1
1∨|s|∣∣∣∣ d

ds
Fh+(s)

∣∣∣∣. 1
1∨ s2

∣∣∣∣ d
ds

Fg+(s)
∣∣∣∣. 1

1∨ s2

Proof see Proposition 2 in Zhimin Zhang [17].

Proposition 5.3. Suppose that C > λ µ1, µ2 < ∞,
∥∥H j(X)

∥∥
p,1 < ∞ for j = 0,1 and∥∥H j(X)

∥∥
p,2 < ∞ for j = 1,2. Then for large m,K,T , we have
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sup
s∈[−mπ,mπ]

∣∣∣F̂h+(s)−Fh+(s)
∣∣∣= Op

(√
(logm)/T

)
(5.1)

sup
s∈[−mπ,mπ]

∣∣∣F̂g+(s)−Fg+(s)
∣∣∣= Op

(√
(logm)/T

)
(5.2)

Proof

First, we have

F̂h+(s)−Fh+(s) =
(

δ

ψ̂ ′U(ρ̂)
.

1
−is− ρ̂

− δ

ψ ′U(ρ)
.

1
−is−ρ

)
+

(
δ

ψU(−is)−δ
− δ

ψ̂U(−is)−δ

)(5.3)

= Ih(s)+ IIh(s)(5.4)

Ih(s)≤
∣∣∣∣ δ

ψ̂ ′U(ρ̂)

(
1

−is− ρ̂
− 1
−is−ρ

)∣∣∣∣+ ∣∣∣∣( δ

ψ̂ ′U(ρ̂)
− δ

ψ ′U(ρ)

)
1

−is−ρ

∣∣∣∣
=

δ∣∣ψ̂ ′U(ρ̂)∣∣ . |ρ̂−ρ|
|−is− ρ̂| . |−is−ρ|

+
δ∣∣ψ̂ ′U(ρ̂)∣∣ ∣∣ψ ′U(ρ)∣∣ . |ψ̂

′
U(ρ̂)−ψ ′U(ρ)|
|−is−ρ|

≤ δ∣∣ψ̂ ′U(ρ̂)∣∣ |ρ̂−ρ|
ρ̂ρ

+
δ∣∣ψ̂ ′U(ρ̂)∣∣ . ∣∣ψ ′U(ρ)∣∣ |ψ̂

′
U(ρ̂)−ψ ′U(ρ)|

ρ

As ρ̂−ρ = Op

(
T−1/2

)
and ψ̂ ′U(ρ̂)−ψ ′U(ρ) = Op

(
T−1/2

)
, it follows that

sup
s∈[−mπ,mπ]

|Ih(s)|= Op(T−1/2)(5.5)

Let us consider IIh(s), note that ρ is the positive root of equation ψU(s) = δ . Then we have

ψU(−is)−δ = [ψU(−is)−δ ]− [ψU(ρ)−δ ]

=−ics− cρ +λ [F fX(s)−L fX(s)]

= (is+ρ)

{
−c+λ

∫
∞

0

eisx− e−ρx

is+ρ
fX(x)dx

}
= (is+ρ)

{
−c+λ

∫
∞

0
eisx

∫ x

0
e−(ρ+is)ydy fX(x)dx

}
which yields that for real number s,

|ψU(−is)−δ | ≥ |is+ρ| .
{

c−λ

∣∣∣∣∫ ∞

0
eisx

∫ x

0
e−(ρ+is)ydy fX(x)dx

∣∣∣∣}
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≥ ρ

(
c−λ

∫
∞

0
x fX(x)dx

)
= ρ (c−λE(X))

On the other hand, we have

ψ̂U(−is)−ψU(−is) = (λ̂ −λ )−

(
1
T

NT

∑
j=1

eisX j −λE(eisX)

)

= (λ̂ −λ )
(
1−E(eisX)

)
− λ̂

(
1

NT

NT

∑
j=1

eisX j −E(eisX)

)
We then obtain

sup
s∈[−mπ,mπ]

|ψ̂U(−is)−ψU(−is)| ≤ 2
∣∣∣λ̂ −λ

∣∣∣+ λ̂ sup
s∈[−mπ,mπ]

∣∣∣∣∣ 1
NT

NT

∑
j=1

eisX j −E(eisX)

∣∣∣∣∣
It is known that λ̂ −λ = Op(T−1/2).

It remains to study the uniform convergence of

1
T

NT

∑
j=1

eisX j −E(eisX).

1
T

NT

∑
j=1

eisX j −E(eisX) =
1
T

NT

∑
j=1

[
gS(X j)−E

(
gs(X j)

)]
+

(
NT

T
−λ

)
E (gs(X))

where gs(x) = eisx.

One can see in Zhimin Zhang [17] that

sup
s∈[−mπ,mπ]

∣∣∣∣(NT

T
−λ

)
E (gs(X))

∣∣∣∣= Op(T−1/2)

For the uniform convergence of 1
T ∑

NT
j=1
[
gS(X j)−E

(
gs(X j)

)]
, we introduce two classes of

real-values functions

Gm,R = {g : g = Re (gs) f or some s ∈ [−mπ,mπ]}

Gm,I = {g : g = Im (gs) f or some s ∈ [−mπ,mπ]}

where Re (.) and Im (.) denote the real part and the imaginary part respectively.
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Then,

sup
s∈[−mπ,mπ]

∣∣∣∣∣ 1
T

NT

∑
j=1

[
gS(X j)−E

(
gs(X j)

)]∣∣∣∣∣
≤ sup

g∈Gm,R

∣∣∣∣∣ 1
T

NT

∑
j=1

[
g(X j)−E

(
g(X j)

)]∣∣∣∣∣+ sup
g∈Gm,I

∣∣∣∣∣ 1
T

NT

∑
j=1

[
g(X j)−E

(
g(X j)

)]∣∣∣∣∣
We shall only study the convergence rate of supg∈Gm,R

∣∣∣ 1
T ∑

NT
j=1
[
g(X j)−E

(
g(X j)

)]∣∣∣ since the

other one is similar.

From Zhimin Zhang [17], it can be seen that for every δ > 0, the bracketing integral

J[]
(
δ ,Gm,R,L2) ≤√logm which immediatly gives with the corollary 19.35 in Aad W Van der

Vaart [21], the following

E

(
sup

g∈Gm,R

∣∣∣∣∣ 1
T

NT

∑
j=1

[
g(X j)−E

(
g(X j)

)]∣∣∣∣∣
)

E

(√
NT

T
E

(
1√
NT

sup
g∈Gm,R

∣∣∣∣∣ NT

∑
j=1

[
g(X j)−E

(
g(X j)

)]∣∣∣∣∣/NT

))

≤
√

logm
T

E(
√

NT )

≤
√

logm
T

E(NT ) =

√
λ

T
logm

which implies that

sup
g∈Gm,R

∣∣∣∣∣ 1
T

NT

∑
j=1

[
g(X j)−E

(
g(X j)

)]∣∣∣∣∣= Op

(√
logm/T

)
(5.6)

Similarly, we show that

sup
g∈Gm,I

∣∣∣∣∣ 1
T

NT

∑
j=1

[
g(X j)−E

(
g(X j)

)]∣∣∣∣∣= Op

(√
logm/T

)
(5.7)

Then by 5.6 and 5.7, we have

sup
s∈[−mπ,mπ]

|IIh(s)|= Op(
√

logm/T )(5.8)

Hence 5.3, 5.5 and 5.8 give the end of the proof.

Similarly, we show the uniform convergence of F̂g+(s).
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Proposition 5.4. Suppose that c> λ µ1, µ2 <∞,
∥∥H j(X)

∥∥
p,1 <∞ for j = 0,1 and

∥∥H j(X)
∥∥

p,2 <

∞ for j = 1,2. Then for large m,K,T , we have

sup
s∈[−mπ,mπ]

∣∣∣∣ d
ds

F̂h+(s)−
d
ds

Fh+(s)
∣∣∣∣= Op

(√
(logm)/T

)
(5.9)

sup
s∈[−mπ,mπ]

∣∣∣∣ d
ds

F̂g+(s)−
d
ds

Fg+(s)
∣∣∣∣= Op

(√
(logm)/T

)
(5.10)

Proof The proof of this proposition is similar to the previous proposition

Theorem 5.1. Suppose that c> λ µ1, µ2 <∞,
∥∥H j(X)

∥∥
p,1 <∞ for j = 0,1 and

∥∥H j(X)
∥∥

p,2 <∞

for j = 1,2. Then for large m,K,T , we have∥∥∥ĥ+m,k−h+
∥∥∥2

= O(m−1)+O(m/K)+Op

(√
m(logm)/T

)
∥∥ĝ+m,k−g+

∥∥2
= O(m−1)+O(m/K)+Op

(√
m(logm)/T

)
Proof For

∥∥∥ĥ+m,k−h+
∥∥∥, by triangle inequality, we have∥∥∥ĥ+m,k−h+

∥∥∥= ∥∥∥ĥ+m,k−h+m,k +h+m,k +h+m−h+m−h+
∥∥∥

≤
∥∥∥ĥ+m,k−h+m,k

∥∥∥+∥∥h+m,k−h+m
∥∥+‖h+m−h+‖(5.11)

By Plancherel theorem, we have

‖h+m−h+‖2 ≤ 1
2π
‖Fh+m−Fh+‖2 =

1
2π

∫
|s‖>mπ

|Fh+(s)|2 ds.
1

2π

∫
|s‖>mπ

1
s2 ds = O(m−1)

(5.12)

Secondly, it is known that ‖ψk‖= 1 and
〈
ψm,k,ψm, j

〉
= 0 for k 6= j. So we have

∥∥Fh+m,k−Fh+m
∥∥2

=

∥∥∥∥∥ ∑
|k|>K

Ah+
m,kψm,k

∥∥∥∥∥
2

= ∑
|k|>K

∣∣∣Ah+
m,k

∣∣∣2(5.13)

Ah+
m,k =

1
2π
√

m

∫ mπ

−mπ

Fh+(s)ds

=
1

2π
√

m
1
−ik
m

∫ mπ

−mπ

Fh+(s)de
−isk

m

=
i
√

m
2πk

(
Fh+(mπ)e−ikπ −Fh+(−mπ)eikπ

)
−
∫ mπ

−mπ

e−isk/m d
ds

Fh+(s)ds(5.14)
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Since Fh+ is a bounded function and by the third enequation in proposition 5.2, we have∣∣∣∣∫ mπ

−mπ

e−isk/m d
ds

Fh+(s)ds
∣∣∣∣≤ ∫ ∞

−∞

∣∣∣∣ d
ds

Fh+(s)
∣∣∣∣ds < ∞

Hence formula 5.14 gives
∣∣Am,k

∣∣. √m
k

Then formula 5.13 gives

∥∥h+m,k−h+m
∥∥2
. ∑
|k|>K

m
k2 = O(m/K)(5.15)

Finally, let us consider the quantity
∥∥∥ĥ+m,k−hm,k

∥∥∥,

∥∥∥ĥ+m,k−hm,k

∥∥∥2
=

∥∥∥∥∥ K

∑
k=−K

(
Âh+

m,k−Ah+
m,k

)
ψm,k

∥∥∥∥∥
2

=
K

∑
k=−K

∣∣∣Âh+
m,k−Ah+

m,k

∣∣∣2(5.16)

By formula 5.14, we have

Âh+
m,k−Ah+

m,k =
i
√

m
2πk

([
F̂h+(mπ)−Fh+(mπ)

]
e−ikπ −

[
F̂h+(−mπ)−Fh+(−mπ)

]
eikπ

)
− i
√

m
2πk

∫ mπ

−mπ

e−isk/m
(

d
ds

F̂h+(s)ds− d
ds

Fh+(s)ds
)

(5.17)

Then formula 5.17 and proposition 5.3 and 5.4 gives∣∣∣Âh+
m,k−Ah+

m,k

∣∣∣≤ √m
2πk

(∣∣∣F̂h+(mπ)−Fh+(mπ)
∣∣∣+ ∣∣∣F̂h+(−mπ)−Fh+(−mπ)

∣∣∣)
+

√
m

2πk

∫ mπ

−mπ

∣∣∣∣ d
ds

F̂h+(s)ds− d
ds

Fh+(s)ds
∣∣∣∣

≤ 1
K

Op

(√
m logm/T

)
(5.18)

Then formula 5.16 yields ∥∥∥ĥ+m,k−hm,k

∥∥∥2
= Op

(√
m logm/T

)
(5.19)

Finally, by 5.11, 5.12, 5.15 and 5.19, we obtain∥∥∥ĥ+m,k−h+
∥∥∥= O(m−1)+O(m/K)+Op

(√
m(logm)/T

)
Similary, we show the proof of the second equality of the proof.
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Proposition 5.5. Suppose that c> λ µ1, µ2 <∞,
∥∥H j(X)

∥∥
p,1 <∞ for j = 0,1 and

∥∥H j(X)
∥∥

p,2 <

∞ for j = 1,2. Then for large m,K,T , we have

∥∥∥V̂ (u,b)−V (u,b)
∥∥∥2

= O(m−1)+O(m/K)+Op

(√
m(logm)/T

)
Proposition 5.6. Suppose that c> λ µ1, µ2 <∞,

∥∥H j(X)
∥∥

p,1 <∞ for j = 0,1 and
∥∥H j(X)

∥∥
p,2 <

∞ for j = 1,2. Then for large m,K,T , we have

∥∥∥φ̂(u,b)−φ(u,b)
∥∥∥2

= O(m−1)+O(m/K)+Op

(√
m(logm)/T

)
6. NUMERICAL SIMULATION

In this section, we provide some numerical results to show that our method is effective.

All computations are done in MATLAB on a EliteBook, with Intel(R) Core(TM) i5-6300U

CPU@2.40GHz 2.50GHz and a RAM of 8GB. Throughout this section, we set c = 8, λ = 5,

δ = 0.1,σ = 1 and use claim size density functions, the exponential EXP(1): fX(x) = e−x, x>

0 and the Erlang(2,2): fX(x) = 4xe−2x, x > 0 . Then for these parameters, the explicit formula

of the expected present value of dividend payments can be easily computed by formula 2.4

and the explicit formula of the Gerber-Shiu function in the Wiener Process without dividend

strategy can be found in Zhimin Zhang [17]. Now for these two claim size density functions,

closed form of Fourier transforms exist so that the Fourier -Sinc method estmation of h+(u) and

g+(u) can be computed. Regarding the observation period [0,T ], we shall take T = 1000∗ p for

p = 1,2,3,4,5. Formula 4.1 and 4.2 are used to compute the estimators ĥ+m,k and ĝ+m,k where

the coefficients Âh+
m,k and Âg+

m,k are computed via FFT algorithm as suggested in Remark4.1. We

take m = 20, K = 210 and we repeat 300 simulations.

First, we compute the empirical average relative errors and the average absolute errors for

V̂ (u,b) and φ̂(u,b). Which are defined by

Average relative errors :
1
]U ∑

u∈U

1
300

300

∑
j=1

∣∣∣V̂j(u,b)−V (u,b)
∣∣∣

V (u,b)

1
]U ′ ∑

u∈U ′

1
300

300

∑
j=1

∣∣∣φ̂ j(u,b)−φ(u,b)
∣∣∣

φ(u,b)
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Average absolute errors :
1
]U ∑

u∈U

1
300

300

∑
j=1

∣∣∣V̂j(u,b)−V (u,b)
∣∣∣

1
]U ′ ∑

u∈U

1
300

300

∑
j=1

∣∣∣φ̂ j(u,b)−φ(u,b)
∣∣∣

where V̂j(u,b) and φ̂ j(u,b) denote the jth simulation values of V̂ (u,b) and φ̂(u,b) respectively.

U = {1,2, · · · ,30}, U ′ = {1,2, · · · ,15}. Since for u > 15, φ̂(u,b) becomes too small. The em-

pirical estimation errors for V̂ (u,b) are presented in table 1. we observe that both the empirical

average errors and empirical absolute errors are decreasing w.r.t p which is due to that, as T

increases, more sample is used to estmate V̂ (u,b) and the estimate values are better. Table 2

shows similar results when estimating the Gerber-Shiu function. We also observe that the em-

pirical average relative errors are smaller than the empirical average absolute errors for V̂ (u,b),

but the empirical average relative errors are larger than the empirical average absolute errors

for φ̂(u,b) . these observations can be explained by the fact that dividends are greater than one

whereas the expected discounted penalty function is less than one.

Finally, we plot 300 consecutive estimators(green curves) on the same picture together with

the true curve(red curves) under the exponential distribution to illustrate variability bands and

demonstrate the stability of the method. We can see that estimator’s beams are extremely close

to true curve. In particular, it follows that for a large observation period, the variances of the

estimation are very small. For our models, it is obvious that all of the lines increse with u for the

the expected present value of total dividends wchich is consistent with the real world where the

expected present value of total dividend payments before ruin increases with the initial surplus.

Besides, we can observe on figure1 as T increases, the estimator V̂ (u,b) tends to be stable

and converges to V (u,b). Figure2 also investigates the function φ(u,b). We find that φ(u,b)

is a decreasing function of the initial surplus u, which implies that when u is small, there is

a higher chance for the ruin to occur. Although we only illustrate the cases with exponential

and Erlang(2,2) claim size densities, The same behevior will be observed when using the other

densities.
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Empirical average relative errors Empirical average

absolute errors

T Exp(1) Erlang(2,2) Exp(1) Erlang(2,2)

1000 0.08584 0.08238 0.38767 0.35876

2000 0.08346 0.07745 0.34789 0.30919

3000 0.07824 0.07186 0.28476 0.26845

4000 0.5782 0.05068 0.22089 0.21369

5000 0.4683 0.03894 0.20376 0.19286

TABLE 1. Estimation errors of V (u,b) by Fourier-Sinc Method

Empirical average relative errors Empirical average

absolute errors

T Exp(1) Erlang(2,2) Exp(1) Erlang(2,2)

1000 0.9479 0.9238 0.07893 0.07264

2000 0.8942 0.8662 0.07258 0.06329

3000 0.8527 0.8284 0.06530 0.05246

4000 0.6996 0.5839 0.05932 0.03596

5000 0.4365 0.3860 0.02953 0.01852

TABLE 2. Estimation errors of φ(u,b) by Fourier-Sinc Method
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(A) (B)

(C) (D)

(E) (F)

FIGURE 1. Beams for estimating the V (u,b): 300 estimators in green, and the

true value in bold red. (a) q=1000; (b) q=2000; (c) q=3000; (d) q=4000; (e)

q=5000; (f) q=6000
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(A) (B)

(C) (D)

(E) (F)

FIGURE 2. Beams for estimating the Gerber-Shiu function φ(u,b): 300 estima-

tors in green, and the true value in bold red. (a) q=1000; (b) q=2000; (c) q=3000;

(d) q=4000; (e) q=5000; (f) q=6000
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7. CONCLUSION

In this paper, we have estimated the espected present value of dividend payments before ruin

and the expected discounted penalty function under perturbed compound Poisson risk model

with constant barrier dividend strategy. Suppose that we have the data set of claim sizes, claim

numbers and the surplus flow levels, we construct our estimators based on the Fourier-Sinc

series expansion method. Due to that we can use FFT algorithm to compute the coefficient in the

Fouirer-Sinc series, the computation of our estimators is very fast. We have derived theoritical

errors and presented some simulation results to show the effectiveness of our estimators.

A future resaerch could be to compare this method with the Fouirer Cosine methods which

also uses Fourier transform. Moreover, one can think on how to estimatimate the expected

present dividend payments and the Gerber-Shiu function under threshold dividend strategy.

ACKNOWLEDGMENTS

The Authors would like to thank the Pan African University Institute of Basic Sciences Tech-

nology and Innovation (PAUSTI) for their financial assistance.

CONFLICT OF INTERESTS

The authors declare that there is no conflict of interests.

REFERENCES

[1] B. De Finetti, Su un’impostazione alternativa della teoria collettiva del rischio, in: Transactions of the XVth

International Congress of Actuaries, Volume 2, pp. 433–443, New York, 1957.

[2] Z. Liu, P. Chen, Dividend payments until draw-down time for risk models driven by spectrally negative levy

processes, Commun. Stat.-Simul. Comput. 51 (2022), 7226–7245.

[3] Y. Zhao, H. Dong, W. Zhong, Equilibrium dividend strategies for spectrally negative levy processes with time

value of ruin and random time horizon, Commun. Stat.-Theory Methods, 51 (2022), 4757–4780.

[4] J. Pecaric, A. Perusic, A. Vukelic, Generalisations of Steffensen’s inequality via Fink identity and related

results, Adv. Inequal. Appl. 2014 (2014), 9.

[5] R.L. Loeffen, On optimality of the barrier strategy in de finetti’s dividend problem for spectrally negative

levy processes, Ann. Appl. Probab. 18 (2008), 1669–1680.



22 KENMOE, ADUDA, DOUX

[6] H. You, J. Guo, J. Jiang, Interval estimation of the ruin probability in the classical compound Poisson risk

model, Comput. Stat. Data Anal. 144 (2020), 106890.

[7] Y. Shimizu, Z. Zhang, Asymptotically normal estimators of the ruin probability for levy insurance surplus

from discrete samples, Risks, 7 (2019), 37.

[8] F. Dussap, Nonparametric estimation of the expected discounted penalty function in the compound poisson

model, Electron. J. Stat. 16 (2022), 2124–2174.

[9] W. Su, Y. Yong, Z. Zhang, Estimating the gerber–shiu function in the perturbed compound poisson model by

laguerre series expansion, J. Math. Anal. Appl. 469 (2019), 705–729.

[10] W. Su, Y. Wang, Estimating the gerber-shiu function in levy insurance risk model by fourier-cosine series

expansion, Mathematics, 9 (2021), 1402.

[11] Y. Huang, W. Yu, Y. Pan, C. Cui, Estimating the gerber-shiu expected discounted penalty function for levy

risk model, Discr. Dyn. Nat. Soc. 2019 (2019), 3607201.

[12] J. Xie, Z. Zhang, Statistical estimation for some dividend problems under the compound poisson risk model,

Insurance: Math. Econ. 95 (2020), 101–115.

[13] Y. Yang, J. Xie, Z. Zhang, Nonparametric estimation of some dividend problems in the perturbed compound

poisson model, Probab. Eng. Inform. Sci. 37 (2023), 418–441.

[14] F. Lundberg, F.I. Riskutjämning, Teori. II: Statistik (Insurance technical smoothing of risks) F. Englunds

Boktryckeri AB, Stockholm, (1926).

[15] C. Constantinescu, G. Samorodnitsky, W. Zhu, Ruin probabilities in classical risk models with gamma claims,

Scandinavian Actuarial J. 2018 (2018), 555–575.
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