
Available online at http://scik.org

Mathematical Finance Letters, 2013, 2013:4

ISSN 2051-2929

OTHER POSITIONS OF PARAMETERS IN THE ASYMPTOTIC
EXPANSIONS OF KNOCK-IN BARRIER OPTION PRICES

DENNIS G. LLEMIT

Department of Mathematics, Adamson University, 900 San Marcelino St., Ermita, 1000 Manila,

Philippines

Abstract. Joshi’s general method for computing the asymptotic expansions of european options was

conceived by placing the strike price at the center of the binomial tree [6]. This set-up showed that the

errors in approximating the continuous pricing models by discrete ones through asymptotic expansion is

of order 1
n . In this paper, we find other positions, aside from the center, for the parameters K (strike

price) and B (barrier level) in the asymptotic expansions of Knock-in barrier option prices under Joshi’s

general method. This has been shown to be possible for the case of an Up-and-In Put (UIP) barrier

option in the paper done by Llemit and Escaner [1].
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1. Introduction

Knock-in barrier options are derivative contracts which activate only whenever the un-

derlying instrument has breached a certain treshhold called the barrier level. Together

with their counterparts, the Knock-out barrier options, they are usually traded in over-

the-counter (OTC) markets and are interesting since they are cheaper compared to vanilla
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options.

The convergence of discrete pricing models, especially the Cox-Ross-Rubinstein (CR-

R) ,to the famous continuous model, Black-Scholes, has been the subject of numerous

studies. Hsia [3] provided the most elegant and comprehensive proof for this convergence.

Diener and Diener[2] computed the asymptotic convergence of a Down-and-In Call (DIC)

barrier option using a technique called bounded coefficients and showed that the order

is 1√
n
. Mark Joshi[6] developed a general method in computing the asymptotic expan-

sions of general vanilla options and showed that the convergence is of order 1
n
. Llemit

and Escaner[1] applied the general method of Joshi and showed that the convergence is

consistent for an Up-and-In Put (UIP) barrier option. However, they found out that the

parameters B and K are not limited to the center of the binomial tree. This result is

different from the assumptions of the general method of Joshi.

In this paper, we examine other types of Knock-in barrier options and determine

whether the results obtained in [1]can be replicated. These are the UIC (Up-and-In

Call), DIC (Down-and-In Call), and the DIP (Down-and-In Put). We begin by listing the

pricing formulas developed by Levitan, Mitchell and Taylor[8]:

For an Up-and-In Call (UIC) barrier option, we have

If x > m, then

(1) UIC0 = e−rT
n∑

j=dn+x
2 e

(
n

j

)
pj(1− p)n−j

(
S0u

ndn−j −K
)
.

If x ≤ m and when (n+m) is odd, then

UIC0 = e−rT

 bn+m
2 c∑

j=dn+x
2 e

(
n

j −m

)
pj(1− p)n−j

(
S0u

ndn−j −K
)

+
n∑

j=dn+m
2 e

(
n

j

)
pj(1− p)n−j

(
S0u

ndn−j −K
) .(2)
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If x ≤ m and when (n+m) is even, then

UIC0 = e−rT

 n+m
2
−1∑

j=dn+x
2 e

(
n

j −m

)
pj(1− p)n−j

(
S0u

ndn−j −K
)

+

bn+x
2 c∑

j=n+m
2

(
n

j

)
pj(1− p)n−j

(
S0u

ndn−j −K
) .(3)

For a Down-and-In Call (DIC) barrier option, we have

If x ≤ m, then

(4) DIC0 = e−rT
n−m∑

j=bn−x
2 c

(
n

m+ j

)
pj(1− p)n−j

(
S0u

ndn−j −K
)
.

If x > m and when (n−m) is odd, then

DIC0 = e−rT

 bn−m
2 c∑

j=dn−x
2 e

(
n

j

)
pj(1− p)n−j

(
S0u

ndn−j −K
)

+
n−m∑

j=dn−m
2 e

(
n

m+ j

)
pj(1− p)n−j

(
S0u

ndn−j −K
) .(5)

If x > m and when (n−m) is even, then

DIC0 = e−rT

 n−m
2
−1∑

j=dn+x
2 e

(
n

j

)
pj(1− p)n−j

(
S0u

ndn−j −K
)

+
n−m∑

j=n−m
2

(
n

m+ j

)
pj(1− p)n−j

(
S0u

ndn−j −K
) .(6)

For a Down-and-In Put (DIP) barrier option, we have

If x > m, then

(7) DIP0 = e−rT
bn+x

2 c∑
j=0

(
n

j

)
pj(1− p)n−j

(
K − S0u

ndn−j
)
.
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If x ≤ m and when (n−m) is odd, then

DIP0 = e−rT

bn−m
2 c∑

j=0

(
n

j

)
pj(1− p)n−j

(
K − S0u

ndn−j
)

+

bn+x
2 c∑

j=dn−m
2 e

(
n

m+ j

)
pj(1− p)n−j

(
K − S0u

ndn−j
) .(8)

If x ≤ m and when (n−m) is even, then

DIP0 = e−rT

n−m
2
−1∑

j=0

(
n

j

)
pj(1− p)n−j

(
K − S0u

ndn−j
)

+

bn+x
2 c∑

j=n−m
2

(
n

m+ j

)
pj(1− p)n−j

(
K − S0u

ndn−j
) .(9)

where

m - number of up or down movements necessary to breach the barrier level B

x - number of up or down movements necessary to breach the strike level K

p - risk-neutral probability

r - risk-free interest rate

u - up factor

d - down factor

n - time steps at maturity.

2.Transformations

Since these formulas are discrete, we cannot readily apply asymptotic expansion. Thus,

we will use a lemma to make them analytic.

Lemma 1. Let n and k be integers where 0 ≤ k ≤ n and p is the probability of an up

movement.

(10)
n∑

j=k

(
n

j

)
pj(1− p)n−j = k

(
n

k

)∫ p

0

yk−1(1− y)n−k dy.
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Using this formula we get their respective integral forms. For equation (1), we have

UIC0 = S0

(⌈
n+ x

2

⌉)(
n⌈

n+x
2

⌉)∫ q

0

yd
n+x
2 e−1(1− y)n−d

n+x
2 e dy

−Ke−rT
(⌈

n+ x

2

⌉)(
n⌈

n+x
2

⌉)∫ p

0

yd
n+x
2 e−1(1− y)n−d

n+x
2 e dy

Similarly, for equation (2), we have

UIC0 = S0

(
q

1− q

)n−bn+m
2 c(

n+

⌈
n+ x

2

⌉
−
⌊
n+m

2

⌋)(
n

n+
⌈
n+x
2

⌉
−
⌊
n+m
2

⌋)
×
∫ q

0

yn+d
n+x
2 e−bn+m

2 c−1(1− y)b
n+m

2 c−dn+x
2 e dy

−Ke−rT
(

p

1− p

)n−bn+m
2 c(

n+

⌈
n+ x

2

⌉
−
⌊
n+m

2

⌋)(
n

n+
⌈
n+x
2

⌉
−
⌊
n+m
2

⌋)
×
∫ p

0

yn+d
n+x
2 e−bn+m

2 c−1(1− y)b
n+m

2 c−dn+x
2 e dy

+S0

(⌈
n+m

2

⌉)(
n⌈

n+m
2

⌉)∫ q

0

yd
n+m

2 e−1(1− y)n−d
n+m

2 e dy

−Ke−rT
(⌈

n+m

2

⌉)(
n⌈

n+m
2

⌉)∫ p

0

yd
n+m

2 e−1(1− y)n−d
n+m

2 e dy

and for equation (3),

UIC0 = S0

(
q

1− q

)n+m
2
−1−n(

n+

⌈
n+ x

2

⌉
+ 1− n+m

2

)(
n

n+
⌈
n+x
2

⌉
+ 1− n+m

2

)
×
∫ q

0

yn+d
n+x
2 e−n+m

2 (1− y)
n+m

2
−1−dn+x

2 e dy

−Ke−rT
(

p

1− p

)n+m
2
−1−n(

n+

⌈
n+ x

2

⌉
+ 1− n+m

2

)(
n

n+
⌈
n+x
2

⌉
+ 1− n+m

2

)
×
∫ p

0

yn+d
n+x
2 e−n+m

2 (1− y)
n+m

2
−1−dn+x

2 e dy.
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For equations (4),(5),and (6), we have

DIC0 = S0

(
q

1− q

)m(
m+

⌈
n− x

2

⌉)(
n

m+
⌈
n−x
2

⌉)
×
∫ q

0

ym+dn−x
2 e−1(1− y)n−m−d

n−x
2 e dy

−Ke−rT
(

p

1− p

)m(
m+

⌈
n− x

2

⌉)(
n

m+
⌈
n−x
2

⌉)
×
∫ p

0

ym+dn−x
2 e−1(1− y)n−m−d

n−x
2 e dy,

DIC0 = S0

(⌈
n− x

2

⌉)(
n⌈

n−x
2

⌉)∫ q

0

yd
n−x
2 e−1(1− y)n−d

n−x
2 e dy

−S0

(⌈
n−m

2

⌉)(
n⌈

n−m
2

⌉)∫ q

0

yd
n−m

2 e−1(1− y)n−d
n−m

2 e dy

−Ke−rT
(⌈

n− x
2

⌉)(
n⌈

n−x
2

⌉)∫ p

0

yd
n−x
2 e−1(1− y)n−d

n−x
2 e dy

+Ke−rT
(⌈

n−m
2

⌉)(
n⌈

n−m
2

⌉)∫ q

0

yd
n−m

2 e−1(1− y)n−d
n−m

2 e dy

+S0

(
q

1− q

)m(
m+

⌈
n−m

2

⌉)(
n

m+
⌈
n−m
2

⌉)
×
∫ q

0

ym+dn−m
2 e−1(1− y)n−m−d

n−m
2 e dy

−Ke−rT
(

p

1− p

)m(
m+

⌈
n−m

2

⌉)(
n

m+
⌈
n−m
2

⌉)
×
∫ p

0

ym+dn−m
2 e−1(1− y)n−m−d

n−m
2 e dy,
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and

DIC0 = S0

(⌈
n− x

2

⌉)(
n⌈

n−x
2

⌉)∫ q

0

yd
n−x
2 e−1(1− y)n−d

n−x
2 e dy

−S0

(
n−m

2

)(
n

n−m
2

)∫ q

0

y
n−m

2
−1(1− y)

n+m
2 dy

−Ke−rT
(⌈

n− x
2

⌉)(
n⌈

n−x
2

⌉)∫ p

0

yd
n−x
2 e−1(1− y)n−d

n−x
2 e dy

+Ke−rT
(
n−m

2

)(
n

n−m
2

)∫ p

0

y
n−m

2
−1(1− y)

n+m
2 dy

+S0

(
q

1− q

)m(
m+ n

2

)(
n

m+n
2

)∫ q

0

y
m+n

2
−1(1− y)n−

m+n
2 dy

−Ke−rT
(

p

1− p

)m(
m+ n

2

)(
n

m+n
2

)∫ p

0

y
m+n

2
−1(1− y)n−

m+n
2 dy.

And for equations (7), (8), and (9),we have

DIP0 = S0

(⌈
n+ x

2

⌉)(
n⌈

n+x
2

⌉)∫ q

0

yd
n+x
2 e−1(1− y)n−d

n+x
2 edy

−Ke−rT
(⌈

n+ x

2

⌉)(
n⌈

n+x
2

⌉)∫ p

0

yd
n+x
2 e−1(1− y)n−d

n+x
2 edy,

DIP0 = S0

(⌈
n−m

2

⌉)(
n⌈

n−m
2

⌉)∫ q

0

yd
n−m

2 e−1(1− y)n−d
n−m

2 e dy

−Ke−rT
(⌈

n−m
2

⌉)(
n⌈

n−m
2

⌉)∫ p

0

yd
n−m

2 e−1(1− y)n−d
n−m

2 e dy

+Ke−rT
(

p

1− p

)n−bn+x
2 c(

n−
⌊
n+ x

2

⌋
+

⌈
n−m

2

⌉)(
n

n−
⌊
n+x
2

⌋
+
⌈
n−m
2

⌉)
×
∫ p

0

yn−b
n+x
2 c+dn−m

2 e−1(1− y)b
n+x
2 c−dn−m

2 e dy

−S0

(
q

1− q

)n−bn+x
2 c(

n−
⌊
n+ x

2

⌋
+

⌈
n−m

2

⌉)(
n

n−
⌊
n+x
2

⌋
+
⌈
n−m
2

⌉)
×
∫ q

0

yn−b
n+x
2 c+dn−m

2 e−1(1− y)b
n+x
2 c−dn−m

2 e dy,

and
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DIP0 = S0

(
n−m

2

)(
n

n−m
2

)∫ q

0

y
n−m

2
−1(1− y)

n+m
2 dy

−Ke−rT
(
n−m

2

)(
n

n−m
2

)∫ p

0

y
n−m

2
−1(1− y)

n+m
2 dy

+Ke−rT
(

p

1− p

)n−bn+x
2 c(

n−
⌊
n+ x

2

⌋
+
n−m

2

)(
n

n−
⌊
n+x
2

⌋
+ n−m

2

)
×
∫ p

0

yn−b
n+x
2 c+n−m

2
−1(1− y)b

n+x
2 c−n−m

2 dy

−S0

(
q

1− q

)n−bn+x
2 c(

n−
⌊
n+ x

2

⌋
+
n−m

2

)(
n

n−
⌊
n+x
2

⌋
+ n−m

2

)
×
∫ q

0

yn−b
n+x
2 c+n−m

2
−1(1− y)b

n+x
2 c−n−m

2 dy

3.Results

We utilize Joshi’s general method by equating all the exponents in the integrals and

setting n = 2N + 1. Hence, we generate their general forms. For the UIC, we have

UIC0 = α (N + 1)

(
2N + 1

N + 1

)(
S0

∫ q

0

yN(1− y)N dy −Ke−rT
∫ p

0

yN(1− y)N dy

)

where α is either 1 or 2.

The general form of the DIC is

DIC0 = (N + 1)

(
2N + 1

N + 1

)(
S0

(
q

1− q

)m ∫ q

0

yN(1− y)N dy

−Ke−rT
(

p

1− p

)m ∫ p

0

yN(1− y)N dy

)
,
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while that of the DIP is

DIP0 = (N + 1)

(
2N + 1

N + 1

)[(
S0

∫ q

0

yN(1− y)N dy

−Ke−rT
∫ p

0

yN(1− y)N dy

)
+

(
Ke−rT

(
p

1− p

)0

×
∫ p

0

yN(1− y)N dy − S0

(
q

1− q

)0 ∫ q

0

yN(1− y)N dy

)]
= 0

A significant result comes out and is stated as a theorem.

Theorem 1. Let x be the number of down movements needed to breach the strike price K,

m the number of down movements needed to breach the barrier level B and n the number

of time steps. Then the order of convergence of a DIC barrier option under Joshi’s general

method holds if either of the following is true:

(1) If (n-x) is odd, x=m=0.

(2) If (n-x) is even, x=m=1.

Proof: After applying Joshi’s general method, we obtain the following equations:

If (n-x) is odd, then

m =
x

2

If (n-x) is even, then

m =
x+ 1

2
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and susbsequently,

n = 2

⌈
n− x

2

⌉
− 1

n = 2

⌈
n−m

2

⌉
− 1

n = 2m+ 2

⌈
n−m

2

⌉
− 1

n = 2

(
n+m

2

)
− 1

Solving them gives us two consistent solution set x = 0, 1 and m = 0, 1. We need to

check which of these solutions agree with the pricing formula. We set-up a table for easier

inspection.

(n-x) x Implied Assumed Implied Admissible Calculated Remark

Nature of n Nature for (n-m) Nature of m Value for m Value of m

Odd 0 Odd Odd Even 0 0 Consistent

Odd 0 Odd Even Odd 1 0 Inconsistent

Odd 1 Even Odd Odd 1 1/2 Inconsistent

Odd 1 Even Even Even 0 1/2 Inconsistent

Even 0 Even Odd Odd 1 1/2 Inconsistent

Even 0 Even Even Even 0 1/2 Inconsistent

Even 1 Odd Odd Even 0 1 Inconsistent

Even 1 Odd Even Odd 1 1 Consistent

As we can see from the table, only the cases x = m = 0 and x = m = 1 are consistent.

Therefore, the theorem has been proven.

4.Conclusions

From the calculations, Joshi’s general method does not work for a DIP barrier option

since the pricing formula was annihilated upon its application. On the other hand, the

general method works for both the UIC and DIC barrier options, but the general form of

the UIC does not give consistent locations for the positions of the parameters B and K.
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Thus, only the DIC option produces results which are different from the assumptions of

the general method and similar to the results obtained in [1]. That is, the barrier level B

and the strike price K can be located one node below the center of the binomial tree.
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