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Abstract 

We show that the problem of pricing the perpetual American options can be treated as an optimal stopping problem. 

We impose some boundary conditions to arrive at the optimal solutions. We consider the option price, stopping time, 

strike price and volatility to approach the problem. From the solution, we deduced that the optimal arbitrage free 

price for the perpetual American put option can only be determined if the optimal value of the stock price of the 

option is known.  
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1.0 Introduction 

The focus of this study is to discuss the problem of optimal stopping of the American option. The 

option bestows on the holder the right to trade an underlying asset at any time t ≤ T (that is, 

before expiry) for a prescribed strike price K. 

For the American call option, the pay-off can be given by the equation, 

𝑓(𝑆, 𝐾) =  {
𝑆(𝑡) − 𝐾      𝑡 ≤ 𝑇
0            𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

                                              (1𝑎) 

The equation (1a) implies that the American call option can only be exercised when the price of 

the underlying asset is greater than the strike price K. 

Also, the pay-off for the American put option 

𝑓(𝑆, 𝐾) =  {
𝐾 − 𝑆(𝑡)      𝑡 ≤ 𝑇
0            𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

                                               (1𝑏) 
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The equation (2) implies that the American put option can be exercised when the strike price K is 

greater than the price S(t) of the underlying. 

Since the holder of the American option can exercise the option at any before the option expires, 

traders are more attracted to this option and mathematicians as a result of this interpret the option 

as a free boundary problem so as to obtain the best of exercise of the option for maximum payoff. 

This work analyses the solution of a simple optimal problem by applying matching value 

condition, smooth pasting condition, asset equilibrium condition and boundary condition. We 

shall also study American options as optimal problems. 

 

2.0 A Simple Optimal Stopping Problem 

We consider a simple optimal stopping problem, 

𝑉(𝑥) =  𝑚𝑎𝑥
𝜏
𝔼𝑥[𝑒

−𝜇𝜏𝑓(𝑋𝑡)]                                                 (2) 

Subject to  

𝑑𝑋𝑡 = 𝑝𝑋𝑡𝑑𝑡 + 𝑞𝑋𝑡𝑑𝐵𝑡                                                             (3) 

𝑋(0) = 𝑥                            

Where; 

 𝜏 =  the stopping time 

 𝜏∗ =  the optimal stopping time,  

𝑥∗ =  the value of the state variable at 𝜏∗ (𝑖. 𝑒. 𝑥∗ = 𝑥(𝜏
∗) 

𝜇 = discount rate 𝑝, 𝑞 are positive integers 

𝑑𝐵𝑡 = an increment of a Wiener process 

 𝑓(. ) = a reward function and  

𝑉(. ) =  a value function 

The relationship between 𝑋 and t is given be the equation (3). Then the choice of 𝜏 which yields 

the maximum value of V(x) will depend on equation (3). 

The problem now is to find the optimal stopping values 𝑥∗  and 𝜏∗  where the function f is 

currently unknown. This is because we have to put into consideration if the value function yields 

maximum value at the time of exercising the function. Hence the pay-off should be maximised in 

the shortest possible time. 

 

 



AMERICAN OPTION: AN OPTIMAL STOPPING PROBLEM                                     3 

2.1 Solution to the Optimal Stopping Problem 

We make the following assumptions through this problem; 

1. Both 𝑓 and 𝑉 are continuous and smooth. 

2. Since and 𝑓  and 𝑉  are both functions of asset market values, then it implies that 

𝑓(𝑥), 𝑉(𝑥) ≥ 0. 

3. Transaction costs related to the option are not put into consideration. 

We need to find the optimal value 𝑥∗. We can say that when the underlying process is less than 

𝑥∗, we choose not to exercise the option but if its value is greater or equal to 𝑥∗, we exercise the 

option. Whereas, it is optimal to exercise when 𝑥 = 𝑥∗(i.e. the shortest possible time) hence 

𝑉(𝑥) = 𝑓(𝑥∗)                                                          (4) 

The equation (4) above is called the value matching condition. 

The decision to exercise or not depends on the optimality at any value of x and also on the gain 

made by comparing the two function V(x) and f(x). This decision will be made according to the 

function H, where 

𝐻(𝑥) = max{𝑉(𝑥), 𝑓(𝑥)}                                   (5) 

By the equation (5), if 𝐻(𝑥) = 𝑉(𝑥), we decide to continue and if 𝐻(𝑥) = 𝑓(𝑥) we stop. In 

order to evaluate the optimal solution to this problem, then we consider the smooth pasting 

condition which states that 

𝑉′(𝑥∗) = 𝑓
′(𝑥∗)                                                  (6) 

Which shows that 𝑉′(𝑥)  and 𝑓′(𝑥)  are equal at optimal value 𝑥∗  smoothly while the value 

matching condition shows that V(x) and f(x) are equal at optimal value 𝑥∗. Then with these two 

conditions considered simultaneously, the function H(x) can be said to be both smooth and 

continuous at optimal value𝑥∗. 

When𝑓(𝑥) ≥ 𝑉(𝑥), we can exercise. This is due to the fact that the stopping value is more than 

the continuing value at this point. However, when𝑓(𝑥) = 𝑉(𝑥), exercise is optimal because we 

will wait for more time for𝑓(𝑥) > 𝑉(𝑥). 

We shall then define the stopping and continuing regions. 

The stopping region is given by 

𝑆𝑟𝑒𝑔 = {𝑥: 𝑓(𝑥) ≥ 𝑉(𝑥)}                                             (7) 

And the continuing region, 

𝐶𝑟𝑒𝑔 = {𝑥: 𝑉(𝑥) > 𝑓(𝑥)}                                             (8) 
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Hence the, the optimal stopping time can be expressed as 

𝜏∗ = inf{𝑡 ≥ 0: 𝑉(𝑋𝑡) ≤ 𝑓(𝑋𝑡)}                                (9) 

From equation (7) and equation (9), we see that the optimal stopping time is that instant which 

the value function is not greater than the gain function. Therefore, the optimal stopping region 

becomes 

𝑆𝑟𝑒𝑔 = {𝑥: 𝑓(𝑥) = 𝑉(𝑥)}                                              (10) 

Equation (10) is called the optimal stopping boundary which divided the state space into 

stopping region and continuation region. It is also a part of the stopping region at which it is 

optimal to exercise the option. Note that at the optimal boundary we have that 𝑥 = 𝑥∗. 

Now assuming it is optimal also to continue for a small time 𝛿𝑡 after the optimal stopping time. 

Then, 

𝑉(𝑥) = 𝑒−𝜇𝛿𝑡𝔼(𝑉(𝑥 + 𝛿𝑥))                                            (11) 

Expanding equation (11) using Taylor’s series expansion, we obtain 

𝑉(𝑥) ≈ 𝑉(𝑥) + 𝛿𝑥𝑉′(𝑥) + 
1

2
(𝛿𝑥)2𝑉" + 0(𝛿𝑥)3                                         (12) 

Neglecting higher order terms and then substituting equation (12) in equation (11), obtain 

𝑉(𝑥) ≈ 𝑒−𝜇𝛿𝑡𝔼 [𝑉(𝑥) + 𝛿𝑥𝑉′(𝑥) + 
1

2
(𝛿𝑥)2𝑉′′(𝑥)]                                  (13) 

Applying 𝔼 over 𝛿𝑥 in equation (13), we obtain 

𝑉(𝑥) =  𝑒−𝜇𝛿𝑡[𝑉(𝑥) + 𝑉′(𝑥𝔼(𝛿𝑥) +
1

2
𝑉′′𝔼(𝛿𝑥)2                                                 (14) 

Subtracting 𝑒−𝜇𝛿𝑡from both sides of (14) becomes 

(1 − 𝑒−𝜇𝛿𝑡)𝑉(𝑥) ≈ 𝑒−𝜇𝛿𝑡 [𝑉′(𝑥)𝔼(𝛿𝑥) +
1

2
𝑉′′(𝑥)𝔼(𝛿𝑥)2]                          

Then 

(1 − 𝑒−𝜇𝛿𝑡)𝑉(𝑥)

𝛿𝑡
≈
𝑒−𝜇𝛿𝑡

𝛿𝑡
[𝑉′(𝑥)𝔼(𝛿𝑥) +

1

2
𝑉′′(𝑥)𝔼(𝛿𝑥)2]                     (15) 

Then as 𝛿𝑡 → 0, that is, we take the derivative and replace 𝛿𝑥 with 𝑑𝑥 and 𝛿𝑡 with 𝑑𝑡 

𝜇𝑉(𝑥) =
1

𝑑𝑡
[𝑉′(𝑥)𝔼𝑑𝑥 +

1

2
𝑉′′(𝑥)𝔼(𝑑𝑥)2]                                                (16) 

From the Stochastic Equation of Motion which states that, given that 𝑑𝑥 = 𝑝𝑥𝑑𝑡 + 𝑞𝑥𝑑𝑧 then 

𝔼(𝑑𝑥) = 𝑝𝑥𝑑𝑡 and 𝔼(𝑑𝑥)2 = [𝑞𝑥]2𝑑𝑡, Blouin (2003). 

Substituting the conditions Stochastic Equation of motion above in equation (16), we obtain 
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𝜇𝑉(𝑥) = 𝑝𝑥𝑉′(𝑥) +
1

2
𝑉′′(𝑥)(𝑞𝑥)2                            (17) 

Equation (17) is called the asset equilibrium condition which implies that the measure of the 

return that can be obtained if the asset is traded in the market and the income obtained if the asset 

was to be invested as the risk free asset should be same. If this condition is not satisfied, then the 

asset is traded in a way that allow arbitrage against the trader, that is the option was exercised 

with no consideration of optimality. 

Equation (17) shows that 𝜇𝑉(𝑥) is the return that could be obtained by trading the asset at its 

market value while 𝑝𝑥𝑉′(𝑥) +
1

2
𝑉′′(𝑥)(𝑞𝑥)2 is the return if the asset was invested as a risk free 

asset. 

However, if equation (17) is not satisfied then the asset is said to be either overvalued or 

undervalued Blouin, (2003). 

Equation (17) gives, 

𝑝𝑥𝑉′(𝑥) +
1

2
𝑞2𝑥2𝑉′′(𝑥) − 𝜇𝑉(𝑥) = 0                                       (18) 

We need to solve the differential equation (18) above which is a Cauchy-Euler equation and it 

can be solved by taking a guess. Let  

𝑉(𝑥) = 𝑘𝑥𝜔 

then,       𝑥𝑉(𝑥) = 𝜔𝑘𝑥𝜔    𝑎𝑛𝑑  𝑥2𝑉′′(𝑥) = 𝜔(𝜔 − 1)𝑘𝑥𝜔                     (19)  

Substituting equation (19) into equation (18) and simplifying, we obtain, 

𝑘𝑥𝜔[𝑞2𝜔(𝜔 − 1) + 2𝑝𝜔 − 2𝜇] = 0                                    (20) 

Then, 

𝑘𝑥𝜔[𝑞2𝜔2 + (2𝑝 − 𝑞2)𝜔 − 2𝜇] = 0                                     (21) 

Note that 𝑘, 𝑝, 𝑞 are constants and 𝑥 > 0 

Obtaining the roots of equation (21) 

𝜔± =
(𝑞2 − 2𝑝) ± √(2𝑝 − 𝑞2)2 + 8𝑞2𝜇

2𝑞2
                                                  (22) 

It follows that 𝑉(𝑥) = 𝑘𝑥𝜔± are solutions to the differential equation (18). This implies that the 

general solution is a linear combinations of the respective solution. Hence, 

𝑉(𝑥) = 𝑘1𝑥
𝜔+ + 𝑘2𝑥

𝜔−                                                       (23) 



6                                EMEKA HELEN OLUYEMISI, FADUGBA SUNDAY EMMANUEL 

If we substitute the solution given in equation (23), equation (4) and equation (6), we will have 

three unknowns, namely𝑘1, 𝑘2 and 𝑥∗ in only two equations. We will need a third equation to 

obtain a unique solution. 

From the properties of geometric Brownian motion, whenever𝑥 = 0 , it should remain zero 

forever and hence the optimal value 𝑥∗ will never be reached. We can now show from equation 

(23) that 

𝑉(0) = 0                                                                          (24) 

From equation (22) it is clear that 𝜔+ > 0 and𝜔− < 0, since𝜇 > 0. Therefore, as 𝑥 → 0, then 

𝑘2𝑥
𝜔− ⟶+∞ for 𝑘2 > 0. Likewise as 𝑥 ⟶ 0 then 𝑘2𝑥

𝜔− ⟶−∞ for 𝑘2 < 0. Then it implies 

that 𝑉(0) = 0 when 𝑘2 = 0. 

Obviously too, the first term of equation (23) goes to zero when ⟶ 0 . Hence, all these satisfy 

the condition in equation (24).  

Therefore, since 𝑘2 = 0, 

𝑉(𝑥) = 𝑘1𝑥
𝜔+                                                                          (25) 

If we apply the equation (25) above to equation (4) and equation (6), we obtain that 

𝑘1𝑥∗
𝜔+ = 𝑓(𝑥∗)                                                                     (26) 

and          

 (𝜔+)𝑘1𝑥∗
𝜔+−1 = 𝑓′(𝑥∗)                                                                  (27) 

Substituting equation (26) in equation (27), we obtain 

(𝜔+)𝑓(𝑥∗)

𝑥∗
= 𝑓′(𝑥∗)                                                               (28) 

Hence, the Optimal value to this particular problem is 

𝑥∗ =
(𝜔+)𝑓(𝑥∗)

𝑓′(𝑥∗)
                                                                           (29) 

Since we have able to evaluate the optimal value 𝑥∗, we can get the optimal stopping time 𝜏∗ as 

𝜏∗ = min {𝑡 ≥ 0: 𝑋𝑡 = 𝑥∗} 

𝜏∗ = min {𝑡 ≥ 0: 𝑋𝑡 =
(𝜔+)𝑓(𝑥∗)

𝑓′(𝑥∗)
}                                    (30) 

Thus, the value function 𝑉(𝑥) will be given as 

𝑉(𝑥) = E𝑥[𝑒
−𝜇𝜏∗𝑓(𝑥∗)]                                                          (31) 
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The solution 𝑥∗ can be extended if the function 𝑓(𝑥) is known and it depends on the nature of the 

problem at hand. 

 

3.0 A Case Study of American Put Options 

Let us consider perpetual American put option which is an American option with no expiry date. 

This implies that the expiry date is at infinity or we can say that it is an American put with 

infinite time horizon. 

Assumptions 

1. There is no arbitrage opportunity in the market. 

2. The underlying asset pays no dividends. 

3. There is one riskless bank account and one risky underlying asset. 

 

3.1 Problem Formulation 

The problem here is to find the optimal arbitrage free price and optimal time for the perpetual 

American put option. 

Firstly, we take a look at the following proposition which is necessary for our study of the 

perpetual American put. 

Proposition 1 

Given the Stochastic differential equation 

𝑑𝑋𝑡 = 𝑟𝑋𝑡𝑑𝑡 + 𝜎𝑋𝑡𝑑𝐵𝑡                                                                                   (32) 

   with 𝑋0 = 𝑥 > 0 

where 𝐵(𝐵𝑡)𝑡≥0  is the standard Brownian motion started at time 𝑡0 = 0 , 𝜎  is the volatility 

coefficient, 𝑟  is the interest rate and 𝑋 = (𝑋𝑡)𝑡≥0  is the geometric Brownian motion that 

governments the asset in the market. The solution to the differential equation (32) is given by  

𝑋𝑡 = 𝑋0 exp((𝑟 −
1

2
𝜎2) 𝑡 + 𝜎𝐵𝑡) 

Proof 

The equation (32) can be rewritten as 

𝑑𝑋𝑡
𝑋𝑡

= 𝑟𝑑𝑡 + 𝜎𝑑𝐵𝑡                                                       (32𝑏) 

Using the Ito formula with 𝑔(𝑥, 𝑡) = 𝑙𝑜𝑔𝑥, it follows that 
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𝑑(𝑙𝑜𝑔𝑋𝑡) =
𝜕𝑔

𝜕𝑡
𝑑𝑡|𝑥=𝑋𝑡 +

𝜕𝑔

𝜕𝑡𝑔
𝑑𝑋𝑡|𝑥=𝑋𝑡 +

1

2

𝜕2𝑔

𝜕𝑥2
(𝑑𝑋𝑡)

2|𝑥=𝑋𝑡                               (33) 

It is obvious that the function 𝑔(𝑥, 𝑡) = 𝑙𝑜𝑔𝑥  has no term in 𝑡 , this means that the term in 

equation (33) differentiated with respect to 𝑡 vanishes. Hence the equation (33) reduces to  

𝑑(𝑙𝑜𝑔𝑋𝑡) =
𝜕𝑔

𝜕𝑥
𝑑𝑋𝑡|𝑥=𝑋𝑡 +

1

2

𝜕2𝑔

𝜕𝑥2
(𝑑𝑋𝑡)

2|𝑥=𝑋𝑡                                         (34) 

Given that 𝑔(𝑥, 𝑡) = 𝑙𝑜𝑔𝑥 implies that 
𝜕𝑔

𝜕𝑥
=

1

𝑥
. We can therefore, substitute the required terms in 

equation (34) to obtain 

𝑑(𝑙𝑜𝑔𝑋𝑡) =
1

𝑋𝑡
𝑑𝑋𝑡 −

1

2𝑋𝑡
2 (𝑑𝑋𝑡)

2                                                                (35) 

From equation (32b), it follows that 

(
𝑑𝑋𝑡
𝑋𝑡
)
2

= 𝑟2(𝑑𝑡)2 + 2𝑟𝑑𝑡𝑑𝐵𝑡 + 𝜎𝑑𝐵𝑡𝑑𝐵𝑡                                                 (36) 

By applying the properties of Brownian motion, equation (36) becomes 

(
𝑑𝑋𝑡
𝑋𝑡
)
2

= 𝜎2𝑑𝑡                                                                                   (37) 

This simplifies equation (35) above to 

𝑑(𝑙𝑜𝑔𝑋𝑡) =
1

𝑋𝑡
𝑑𝑋𝑡 −

1

2
𝜎2𝑑𝑡                                                                (38) 

Combining equation (32b) and equation (38), we obtain 

𝑑(𝑙𝑜𝑔𝑋𝑡) = 𝑟𝑑𝑡 + 𝜎𝑑𝐵𝑡 −
1

2
𝜎2𝑑𝑡                                                     (39) 

Simplifying equation (39) above yields 

𝑑(𝑙𝑜𝑔𝑋𝑡) = (𝑟 −
1

2
𝜎2) 𝑑𝑡 + 𝜎𝑑𝐵𝑡                                                   (40) 

The integral form of the of (40) is given by 

∫ 𝑑(𝑙𝑜𝑔𝑋𝑠) = ∫ (𝑟 −
1

2
𝜎2) 𝑑𝑠 +

𝑡

0

𝑡

0

∫ 𝜎𝑑𝐵𝑠

𝑡

𝑜

                                       (41) 

Equation (41) reduces to 

[𝑙𝑜𝑔𝑋𝑠]0
𝑡 = (𝑟 −

1

2
𝜎2) 𝑡 + 𝜎𝐵𝑡                                                    (42) 

then, 
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𝑋𝑡 = 𝑋0 exp((𝑟 −
1

2
𝜎2) 𝑡 + 𝜎𝐵𝑡)                                                  (43) 

The arbitrage free price of the perpetual American put is given by Peskir and Shiryaev (2006) 

𝑉(𝑥) = max
𝜏
𝔼𝑥[𝑒

−𝑟𝜏(𝐾 − 𝑋𝜏)
+]                                                     (44) 

where 𝐾 =Strike price, 𝜏 =stopping time, 𝑋𝜏 =asset price at time 𝑡 according to equation (43). It 

is important to note that the gain function of equation (44) is 𝑓(𝑥) = (𝐾 − 𝑥)+ and 𝑋𝜏 in the 

gain function is the solution 𝑋𝑡 of equation (43) at 𝑡 = 𝜏. 

The problem now is to determine the optimal arbitrage free price and optimal stopping time, say 

𝜏∗ to exercise the option which yields the maximum value according to the equation (44). We 

shall need to find the price of the stock according to equation (43) which will help us to proceed. 

 

3.1.1 Solution to the American Put Problem 

It is a general knowledge that the optimal exercise time of the American put is when the stock 

price falls as much as possible. The option is best exercised at the possible minimum time of 

duration from when the option contract was made but with the possible maximum pay off. From 

equation (44) and equation (43) as 𝑋 becomes very small, if the option is not exercised then less 

likely the payoff will not increase upon continuation. This is because the payoff is maximum 

when the price of the stock falls in the market, not considering other factors. 

Therefore, we assume that there exists a point 𝑝 ∈ (0, 𝐾) such that 

𝜏𝑝 = min{𝑡 ≥ 0: 𝑋𝑡 ≤ 𝑝}                                                    (45) 

Equation (45) implies that we need to find the point 𝑝 which will give the optimal price in order 

to find optimal value of 𝑉(𝑥) and 𝜏𝑝 . It is important to note that 𝑝 is similar to 𝑥∗  given in 

equation (30). 𝑝 stands for a certain price between 0 and 𝐾 as the option cannot be exercised if 

the stock price exceeds or equals 𝐾. The stock price cannot be zero. 

According to Peskir and Shiryaev (2006), by the standard argument of Strong Markov property 

for the value function 𝑉(𝑥) and the unknown point 𝑝, we get the following boundaries. 

𝕃𝑥 = 𝑟𝑉  𝑓𝑜𝑟  𝑥 > 𝑝  (Asset equilibrium condition)                                                             (46𝑎) 

𝑉(𝑥) = (𝐾 − 𝑥)+ for 𝑥 = 𝑝  (Value matching condition)                                                    (46𝑏) 

𝑉′(𝑥) = −1  𝑓𝑜𝑟 𝑥 = 𝑝  (Smooth pasting condition)                                                            (46𝑐) 

𝑉(𝑥) > (𝐾 − 𝑥)+  𝑓𝑜𝑟 𝑥 > 𝑝  (Continuation region)                                                            (46𝑑) 

𝑉(𝑥) = (𝐾 − 𝑥)+  𝑓𝑜𝑟 0 < 𝑥 < 𝑝  (Value matching condition)                                         (46𝑒) 
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From the condition (46a), we obtain, 

𝑟𝑥
𝜕𝑉

𝜕𝑥
+
𝜎2𝑥2

2

𝜕2𝑉

𝜕𝑥2
= 𝑟𝑉                                                             (47) 

This can be modified to become 

𝜎2

2
𝑥2𝑉′′(𝑥) + 𝑟𝑥𝑉′(𝑥) − 𝑟𝑉(𝑥) = 0                                                (48) 

The general solution of equation (48) above is 

𝑉(𝑥) = 𝐾1𝑥
𝜔+ + 𝐾2𝑥

𝜔−                                                                      (49) 

As far as this problem is concerned, we need to know the values of 𝜔+ and 𝜔−. Comparing 

equations (22) and (48), we see that 𝑞 = 𝜎, 𝑝 = 𝑟, and 𝜇 = 𝑟. Hence we obtain 

𝜔± =
(𝜎2 − 2𝑟) ± √(2𝑟 − 𝜎)2 + 8𝜎2𝑟

2𝜎2
                                                  

=
(𝜎2 − 2𝑟) ± (2𝑟 + 𝜎2)

2𝜎2
                                                            

= 1 ,     
−2𝑟

𝜎2
                                                                                        (50) 

We then set 𝜔+ = 1 and 𝜔− =
−𝑟

𝐴
 where 𝐴 =

𝜎2

2
. 

Note that it is clear that 𝜔− < 0, since both 𝑟 > 0 and 𝜎 > 0. 

The general solution in equation (49) becomes 

𝑉(𝑥) = 𝐾1𝑥 + 𝐾2𝑥
−𝑟
𝐴                                                                       (51) 

In arbitrage free market, the option price of American option is 𝑉(𝑥) =≤ 𝐾 and 𝑥 > 0 Capinski 

and Zastawniak (2003). This implies that the solution in equation (51) should be bounded. That 

is 𝐾1𝑥 + 𝐾2𝑥
−𝑟

𝐴 ≤ 𝐾 . When 𝑥  gets very large, the first term tends to ∞  for 𝐾1 > 0  and −∞ 

for 𝐾1 < 0. This means that the function in equation (51) is no longer bounded. Hence for it to be 

bounded, 𝐾1 must be zero. 

Remark 1 

The second term is finite for all values of 𝑥. 

From the fact above, the solution in equation (51) becomes 

𝑉(𝑥) = 𝐾2𝑥
−𝑟
𝐴                                                                      (52) 

Where 𝐾2 is a constant to be determined. 



AMERICAN OPTION: AN OPTIMAL STOPPING PROBLEM                                     11 

Since the term with the root 𝜔+cancels, the optimal value of 𝑝 is obtained by replacing 𝜔+ with 

𝜔− from equation (30). Hence 

𝑝 =
(𝐾 − 𝑥)+𝜔−
𝑑
𝑑𝑥
(𝐾 − 𝑥)+

                 

= −(𝜔−)(𝐾 − 𝑥)
+                                                                   (53) 

Applying condition (46b), we obtain 

𝑝 = −(𝜔−)(𝐾 − 𝑝)                                                        

=
−𝐾𝜔−
1 − 𝜔−

                                                                  

=
𝐾
𝑟
𝐴

1 +
𝑟
𝐴

                                                                        

=
𝐾

1 +
𝐴
𝑟

                                                                                                             (54) 

Remark 2 

Recall that it was assumed that 𝑝 ∈ (0, 𝐾). This is the optimal stock price to exercise the option. 

This shows that the optimal stock price depends on the strike price 𝐾  and the volatility 𝜎 

since𝐴 =
𝜎2

2
. That is, if the volatility 𝜎 and the strike p rice 𝐾 in the perpetual American put 

options are known in advance, we could be able to find the specific value of 𝑝. 

From the equations (45) and (54), the optimal stopping time becomes 

𝜏∗ = min{𝑡 ≥ 0: 𝑋𝑡 ≤
𝐾

1 +
𝐴
𝑟

}                                       (55) 

At this point, we need to find the value of 𝑉(𝑥). To do this, we find the value of 𝐾2 at this 

particular 𝑝. From equation (52), we have 

𝑉′(𝑥) =
−𝑟

𝐴
𝐾2𝑥

(
−𝑟
𝐴
−1)                                                     (56) 

Applying the condition in equation (46c), we obtain 

𝑟

𝐴
𝐾2𝑝

(
−𝑟
𝐴
−1) = 1                                                                 (57) 

which gives, 

𝐾2 =
𝐴

𝑟
𝑝(1+

𝑟
𝐴
)                                                       
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Using equation (54) we have that 

𝐾2 =
𝐴

𝑟
(

𝐾

1 +
𝑟
𝐴

)

(1+
𝑟
𝐴
)

                                                            (58) 

Substituting equation (58) into equation (52), we obtain 

𝑉(𝑥) = 𝑥
−𝑟
𝐴
𝐴

𝑟
(

𝐾

1 +
𝑟
𝐴

)

(1+
𝑟
𝐴
)

                                             (59) 

Observe that the first three boundaries given in equations (46a – c) have been applied so far to 

get us to equation (59), they result into𝑥 ≥ 𝑝. From the last two represented by equations (46d – 

e), we see that 𝑉(𝑥) = 𝐾 − 𝑥 for 0 < 𝑥 ≤ 𝑝. 

 

If we apply all the five boundaries, we see that 

𝑉(𝑥) =

{
 
 

 
 

𝑥
−𝑟
𝐴
𝐴

𝑟
(

𝐾

1 +
𝑟
𝐴

)

(1+
𝑟
𝐴
)

      𝑓𝑜𝑟 𝑥 ≥ 𝑝                          

(𝐾 − 𝑥)                              𝑓𝑜𝑟     0 < 𝑥 ≤ 𝑝     

                      (60) 

The equation (60) above is the optimal free arbitrage price for the perpetual American put which 

can only be determined if the optimal value of 𝑝 is known. 
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